首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A potentiometric titration method for the assay of 2′,3′-cyclic nucleotide 3′-phosphohydrolase is presented. Progress curves of the reaction were recorded automatically by pH-stat. 2-Mercaptoethanol was added to the reaction mixture to maintain a linear rate of reaction. The method is suitable for obtaining kinetic parameters and can be used for the rapid assay of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in nervous tissues. An improved colorimetric method for estimation of 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity at the optimum pH is described. This method employs the two-step procedure in which decyclization by 2′,3′-cyclic nucleotide 3′-phosphohydrolase and dephosphorylation by Escherichia coli alkaline phosphatase (EC 3.1.3.1) are carried out separately under the optimum conditions for each enzyme. The method is sensitive and most convenient for routine assays.  相似文献   

2.
A comparison has been made between the capacity to hydrolyse 2′,3′-cyclic adenosine monophosphate and 3′,5′-cyclic adenosine monophosphate in subcellular fractions of normal and neoplastic (lymphosarcoma) spleen of C57BL mice. The effect of X-irradiation on these activities was tested. Subcellular fractionation of normal and lymphosarcoma spleen points to a different overall localization of the enzymes. The 2′,3′-cyclic nucleotide phosphodiesterase (2′,3′-cAMPase) has its highest specific activity in the particulate fractions of the cell, while the data on 3′,5′-cyclic nucleotide phosphodiesterase (3′,5′-cAMPase) show the highest activity in the soluble fraction. The 2′,3′-cAMPase activity is higher in the tumor as compared to the normal tissue, while the opposite holds for 3′,5′-cAMPase. Total body irradiation of normal mice with a dose of 600 rads of X-rays, results in a clear drop in 2′,3′-cAMPase 48 hours after the exposure. The 3′,5′-cAMPase is hardly affected at this time. Neither imidazol nor Mg++ has any influence on the 2′,3′-cAMPase. The pH optimum for 3′,5′-cAMPase and 2′,3′-cAMPase appears to be 7.7 and 6.2 respectively. This report suggests a no-identity of the two enzymes in mouse spleen, a situation different from that found in certain plants.  相似文献   

3.
Abstract: An improved procedure of the solubilization and purification of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNPase) from bovine cerebral white matter is reported. To remove easily extractable protein, the tissue was homogenised in 10 vol. of 0.5 M-ammonium acetate containing 10 mM-Tris. HCI, pH 6.9, at 4°C and centrifuged at 105,000 g for 60 min. The precipitate was extracted with 10 vol. of 0.5% Triton X-100 containing 10 mM-Tris. HCI, pH 6.9, and centrifuged, By this extraction, over 70% soluble protein could be removed in the supernatant and most CNPase activity was kept in the precipitate. The precipitate was extracted with 10 vol. of 1% Triton X-100 and 1 M-ammonium acetate mixture containing 10 mM-Tris.HCI, pH 8.2, and centrifuged at 105,000 g for 60 min. The extract contained 54% of CNPase and the specific activity was fivefold that of the original homogenate. Subsequently, the extractions were carried out with 2% Triton X-100-2 M-ammonium acetate and 4% Triton X-100-4 M-ammonium acetate at pH 8.2. The recovery of CNPase was found to be nearly 90% from the original homogenate, without loss of enzyme activity during extraction, while much CNPase activity was lost when guanidinium chloride was used as the extraction medium. Using the Triton X-100-ammonium acetate extract, several column chromatography techniques were applied to purify the enzyme. In the first step, Phenyl-Sepharose CL-4B column chromatography was performed by eluting with a double-linear gradient of ammonium acetate and Triton X-100. In the second step, the fraction containing CNPase after Phenyl-Sepharose CL-4B column chromatography was applied to a Sepharose 6B column and the enzyme was eluted with 1% Triton X-100- I M-ammonium acetate, pH 8.2. The peak containing CNPase was applied to CM-Sepharose CL-6B column chromatography in the final step. The enzyme was eluted with a linear gradient of KCI. In this step, CNPase eluted as a sharp peak and the specific activity was approximately 2300 pmol 2′-AMP formed/min/mg protein. The recovery of CNPase from the original homogenate was about 50%. By the isoelectrofocusing technique, the pI of CNPase was found to be 8.6. When Reisfeld polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis were carried out on the purified CNPase, only one protein band, corresponding to CNPase activity, was detected. Its molecular weight was estimated to be approximately 51,000 as the active enzyme form. K, value of the purified enzyme for 2′,3′-CAMP calculated from a Lineweaver-Burk plot was 3.13 mM.  相似文献   

4.
A procedure was developed for the detection of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in myelin. This assay was sufficiently sensitive to detect the low levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human erythrocytes. The 2′,3′-cyclic nucleotide 3′-phosphohydrolase of human erythrocytes was determined to be exclusively associated with the inner (cytosolic) side of the membrane. Leaky ghostsand resealed ghosts were assayed for 2′,3′-cyclic nucleotide 3′-phosphohydrolase, (Ca2+/Mg2+-ATPase, and acetylcholinesterase activity, and the 2′,3′-cyclic nucleotide 3′-phosphohydrolase profile is the same as that of the (Ca2+/Mg2+)-ATPase, an established inner membrane maker.  相似文献   

5.
Subcellular distribution of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) in desheathed, saline perfused cat sciatic nerve is reported. CNPase specific activity was enriched in the total particulate (P2) fraction and was low in the soluble (S2) fraction. “Light-myelin” floating above the 0.60 M sucrose phase had the highest CNPase activity, 2.5-fold over the crude homogenate (CH). By contrast, enzyme activity in “heavy myelin” floating above the 0.85 M sucrose interface was equal to that of the CH and accounted for only 12% of total activity. CNPase activity in the membranes floating above the 0.25 and 0.60 and 0.85 M sucrose phases comprised nearly 70% of the total CNPase activity. The “light myelin” fraction floating above the 0.60 M sucrose accounted for approx. 51% of the total CNPase activity. SDS-PAGE of membranes individually harvested from above the 0.25 and 0.60 and 0.85 M sucrose phases revealed the presence of myelin-specific proteins (P0, P1; and P2). Electron microscope examination demonstrated the presence of myelin in each membrane fraction. The results of this study show that the majority of CNPase activity is associated with “light myelin” in cat peripheral nerve.  相似文献   

6.
A rapid and precise method for the determination of brain 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP) activity has been developed. Total brain homogenates were treated with deoxycholate, and CNP activity was measured as inorganic phosphate (phosphomolybdic acid, 410 nm) released from the product, 2′-AMP, by alkaline phosphatase. Measurements were carried out under optimal conditions of temperature (30°C) and pH (6.2) using the whole brain of the rat, chicken, and quaking mouse. The entire assay was applicable to multiple samples and could be completed in less than 1 hr.  相似文献   

7.
Although the function of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNPase) in myelin is unknown, the enzyme has been implicated in the metabolism of myelin proteins. Using 2′-AMP to inhibit CNPase, we examined the effect of reduced enzyme activity on the in vitro incorporation of 14C-leucine into brain proteins. The results of this study revealed that (1) guinea pig brain homogenates incorporate leucine into protein from a sucrose medium in a linear fashion, (2) all brain fractions (cytosol, myelin, and microsomes) are labelled within 1 hr, (3) 2′-AMP inhibition of CNPase by 50% results in a similar inhibition of brain protein synthesis, and (4) the reduced protein synthesis is accompanied by a shift in label from myelin proteins to those found in the microsomes. These results are consistent with a role for CNPase in myelin protein synthesis.  相似文献   

8.
Abstract— Separation of 2′-adenosine monophosphate from 2′,3′-cyclic adenosine monophosphate by coprecipitation with a number of salt mixtures was examined and found to be most successful with Na2CO3/CdCl2 and Na2CO3/ZnSO4. A simple and rapid assay for 2′,3′-cyclic nucleotide 3′-phosphohydrolase using coprecipitation with Na2CO3/CdCl2 is described.  相似文献   

9.
Livers from fed male rats were perfused in vitro with O2′-monobutyryl guanosine 3′,5′-cyclic monophosphate. The output of triglyceride was reduced, while output of ketone bodies and glucose was stimulated by 10?4M monobutyryl guanosine 3′,5′-cyclic monophosphate. No effect was observed with 10?5 M nucleotide. Monobutyryl guanosine 3′,5′-cyclic monophosphate did not affect uptake of free fatty acids. In these respects, monobutyryl guanosine 3′,5′-cyclic monophosphate mimics the effects of dibutyryl adenosine 3′,5′-cyclic monophosphate, although the guanylic nucleotide seems to be less potent than the adenosine 3′,5′-cyclic monophosphate derivative.  相似文献   

10.
In our previous studies phosphorylation of several membrane-bound proteins in brain and liver mitochondria were found to be regulated by Ca2+ as a second messenger. One of the proteins, the 46 kDa phosphoprotein was found to be highly phosphorylated when Ca2+-induced permeability transition pore (mPTP) was opened in rat brain mitochondria (RBM). In the present study the 46 kDa phosphoprotein was identified as 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) after purification by 2D diagonal electrophoresis following mass spectrometric analysis and Western blot probed with anti-CNP antibody. CNPase was discovered in immunoprecipitates of mitochondria, phosphorylated under both conditions (control and with opened mPTP). Status phosphorylation of CNPase was found to be higher in the inmmunoprecipiates of calcium-overloaded RBM. The phospohoserine and phosphotyrosine residues were detected in phosphorylated 46 kDa band (CNPase) as well as in CNPase immunoprecipitates indicating possible participation of tyrosine and serine protein kinases in phosphorylation of CNPase in mitochondria. The levels of phospo-Ser and phospho-Tyr were increased in RBM with mPTP opened. It was found that CNPase substrate, 2′,3′-cAMP (5 μM) and, a non-competitive CNPase inhibitor, atractyloside (5 μM), were able to increase the level of CNPase phosphorylation in calcium-overloaded mitochondria, while CsA (mPTP blocker) was able to strong suppress the phosphorylation of the enzyme. Collectively, our results provide evidence that Ca2+-stimulated and mPTP-associated CNPase phosphorylation might be an important stage of mPTP regulation in mitochondria, revealing a new function of CNPase outside of myelin structure.  相似文献   

11.
Administration of dibutyryl-3′,5′-cyclic AMP to rats caused marked, but temporary, decrease of liver glutathione. This decrease appeared to be catalyzed by γ-glutamyltransferase, because it occured concomitantly with induction of the enzyme and increase of cysteine in the liver. The biological half-life of hepatic γ-glutamyltransferase was estimated to be about 3 hours. It is proposed that the physiological levels of glutathione and γ-glutamyltransferase in the liver are controlled by 3′,5′-cyclic AMP, and that liver glutathione may serve as a reservoir of cysteine, which can be mobilized by the transferase.  相似文献   

12.
The differentiation of oligodendrocytes in the forebrain of the opossum (Didelphis marsupialis) has been studied by the immunohistochemical identification of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and by the autoradiographic detection of the uptake of 3H-thymidine. CNPase is expressed early in oligodendroglia somata and fibre sheaths (myelin) in the forebrain and its persistence in the cell bodies is regionally heterogeneous, being ephemeral in cells within the optic pathway, supraoptic decussation, and posterior commissure, of intermediate duration in the mamillo-thalamic fascicle, and stria medullaris, and long-lasting in other diencephalic and in telencephalic tracts. In the cerebral cortex, most CNPase + cells have small somata and multiple processes (types I and II). CNPase-expressing oligodendrocytes are also regionally heterogeneous in terms of proliferative capability, which could not be detected in forebrain tracts or diencephalon, but has appeared in a small proportion of cells in the neocortical white matter and in the fimbria. Our findings provide additional evidence in favour of the heterogeneity of oligodendrocytes.  相似文献   

13.
The adenosine 3′, 5′-cyclic monophosphate phosphodiesterase (PDE) activities were evaluated in X-irradiation induced Holtzman rat small bowell adenocarcinoma and age-matched normal small intestine. Within normal small intestine, PDE activity was optimal at pH 7.4, and highly dependent upon the addition of Mg2+ or Mn2+. Analyses of the rat small bowel adenocarcinoma revealed significantly elevated PDE activities above the normal small bowel which were found to be relatively constant throughout the length of the ileum and jejunum. These findings suggest that the diminished intracellular adenosine 3′, 5′-cyclic monophosphate levels observed in this lesion (1) may be the consequence of elevated PDE activities.  相似文献   

14.
ABSTRACT

Fast-atom bombardment mass spectrometry (FABMS), and collisionally-induced dissociation and mass-analyzed ion kinetic energy spectrum scanning (CID/MIKES) have been used to examine cation effects on a Phaseolus chloroplast complex phosphodiesterase activity. The kinetic parameters of the activity, and the effects of Li+, Na+, K+, Mg2+, Mn2+ and Fe3+ upon them, were determined with 3′,5′-cyclic AMP, -GMP and -CMP, and 2′,3′-cyclic AMP, -GMP and -CMP as substrates. Irrespective of the presence of cations and of the complex nucleotidase, the preferred substrate is a 3′,5′-cyclic nucleotide, not a 2′,3′-cyclic nucleotide. In the presence of the nucleotidase 3′,5′-cyclic AMP and 3′,5′-cyclic GMP are the best substrates, unless Fe3+ ions are present. Mg2+ and Mn2+ stimulate hydrolysis of 3′,5′-cyclic AMP and 3′,5′-cyclic GMP by the complex. However, Fe3+ inhibits these activities but stimulates the hydrolysis of 3′,5′-cyclic CMP. Kinetic data indicate that each of these six substrates is hydrolyzed at a single, common, catalytic site. Differentiation of the phosphodiesterase isomeric mononucleotide products by FABMS CID/MIKES analysis indicates that in the absence of ions and after removal of the nucleotidase, the 3′-ester linkage of the 3′,5′-cyclic substrates was hydrolyzed exclusively. Addition of monovalent and divalent ions results in hydrolysis of both the 5′- and 3′-ester linkages.  相似文献   

15.
Cytidine 2′,3′-cyclic monophosphate (2′,3′-cCMP) and uridine 2′,3′-cyclic monophosphate (2′,3′-cUMP) were isolated from Pseudomonas fluorescens pfo-1 cell extracts by semi-preparative reverse phase HPLC. The structures of the two compounds were confirmed by NMR and mass spectroscopy against commercially available authentic samples. Concentrations of both intracellular and extracellular 2′,3′-cCMP and 2′,3′-cUMP were determined. Addition of 2′,3′-cCMP and 2′,3′-cUMP to P. fluorescens pfo-1 culture did not significantly affect the level of biofilm formation in static liquid cultures.  相似文献   

16.
An enzyme that catalyzed the deamination of adenosine 3′-phenylphosphonate was purified from squid liver to homogeneity as judged by SDS-PAGE. The molecular weight of the enzyme was estimated to be 60,000 by SDS-PAGE and 140,000 by Sephadex G-150 gel filtration. The enzyme deaminated adenosine, 2′-deoxyadenosine, 3′-AMP, and 2′,3′-cyclic AMP, but not adenine, 5′-AMP, 3′,5′-cyclic AMP, ADP, or ATP. The apparent Km and Vmax at pH 4.0 for these substrates were comparable (0.11-0.34mM and 179-295 μmol min?1 mg?1, respectively). The enzyme had maximum activity at pH 3.5-4.0 for adenosine 3′-phenylphosphonate, at pH 5.5 for adenosine and 2′-deoxyadenosine, and at pH 4.0 for 2′,3′-cyclic AMP and 3′-AMP when the compounds were at concentration of 0.1 mM. The Km at 4.0 and 5.5 for each substrate varied, but the Vmax were invariant. These results indicated that the squid enzyme was a novel adenosine (phosphate) deaminase with a unique substrate specificity.  相似文献   

17.
The voltammetric oxidation of adenosine-3′,5′-cyclic monophosphate (3′,5′-CAMP) has been studied in the pH range 2.13–10.07 using pyrolytic graphite electrode (PGE). Voltammetric, coulometric, spectral studies, and product characterization indicate that the oxidation of 3′,5′-CAMP occurs in an EC reaction involving a 6H+, 6e process at pH 7.24. Electrooxidized products were seperated by semipreparative high performance liquid chromatography (HPLC) and were characterized by mp, 1HNMR, FTIR, and GC-mass as allantoin cyclic ribose monophosphate and 3 dimers as the major products. A detailed interpretation of the redox mechanism of 3′,5′-CAMP also has been presented to account for the formation of various products.  相似文献   

18.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

19.
A general procedure is described for the two-step chemical synthesis from [32P]orthophosphoric acid of the eight common ribo- and deoxyribonucleoside 3′,5′-cyclic monophosphates. The method is simple and reliable and both steps are carried out in the same reaction flask without an intermediate purification step. 32P-labelled cyclic nucleotides are obtained after paper chromatography in yields of 20–60% relative to starting [32P]orthophosphoric acid and with a specific activity of greater than 1 mCi/μmole. Alternative methods for the purification of reaction mixtures and for the preparation of 32P-labelled 3′,5′-cyclic AMP and 3,′,5′-cyclic GMP are described.  相似文献   

20.
The regulation of acid phosphatase synthesis by various phosphate compounds was examined in Baker’s yeast protoplasts. Synthesis was repressed by inorganic phosphate and phosphomonoesters. Phosphomonoesters were hydrolysed by a small amount of non-specific acid phosphatase present in the protoplast membrane. The inorganic phosphate that was liberated and incorporated into protoplasts probably repressed acid phosphatase synthesis. Phosphodiesters, such as 3′, 5′-cyclic AMP, 3′, 5′-cyclic CMP and 3′, 5′-cyclic GMP, promoted acid phosphatase synthesis. The effect of 3′, 5′-cyclic AMP was not to overcome hexose repression, because high hexose did not repress acid phosphatase synthesis. 3′, 5′-cyclic AMP did not overcome repression of the enzyme synthesis by inorganic phosphate. From these observations 3′, 5′-cyclic nucleotides probably had some effect on the yeast acid phosphatase-synthesizing system but the exact role of the nucleotides is obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号