首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular freezing of glycerolized red cells.   总被引:1,自引:0,他引:1  
K R Diller 《Cryobiology》1979,16(2):125-131
The response of glycerolized human red blood cells to freezing has been evaluated in terms of the thermodynamic state of the frozen intracellular medium. The physiochemical conditions requisite for intracellular freezing, characterized by the cooling rate and the degree of extracellular supercooling, are altered appreciably by the prefreezing addition of glycerol to the cells.Fresh human erythrocytes were suspended in an isotonic glycerol solution yielding a final cryophylactic concentration of either 1.5 or 3.0 m. Subsequently the cell suspension was frozen on a special low temperature stage, mounted on a light microscope, at controlled constant cooling rates with varying degrees of extracellular supercooling (ΔTsc). The formation of a pure intracellular ice phase was detected by direct observation of the cells.The addition of glycerol produced several significant variations in the freezing characteristics of the blood. As in unmodified cells, the incidence of intracellular freezing increased with the magnitudes of both the cooling rate and the extracellular supercooling. However, the glycerolized cells exhibited a much greater tendency to supercool prior to the initial nucleation of ice. Values of ΔTsc > ?20 °C were readily obtained. Also, the transition from 0 to 100% occurrence of intracellular ice covered a cooling rate spectrum in excess of 300 to 600 °K/min, as compared with 10 °C/min for unmodified cells. Thus, the incidence of intracellular ice formation was significantly increased in glycerolized cells.  相似文献   

2.
A E Woolgar 《Cryobiology》1974,11(1):52-59
An investigation was made into the effects of the presence of polyvinylpyrrolidone (PVP) on changes in human red blood cells suspended in hypertonic solutions, on posthypertonic hemolysis, and on freezing at temperatures down to ?12 °C.PVP is very effective at reducing hemolysis when the red blood cells are frozen at temperatures down to ?12 °C. However, the membranes of the cells recovered on thawing have become very permeable to sodium and potassium ions and there is a much increased hemolysis if the cells are resuspended in an isotonic solution of sodium chloride.The presence of PVP does not affect the dehydration of the cells or the development of a change in membrane permeability when the cells are shrunken in hypertonic solutions at 0 °C. Neither does its presence in the hypertonic solution reduce the extent of posthypertonic hemolysis at 4 °C (as measured by the hemolysis on resuspension in an isotonic solution of sodium chloride), but it is more effective than sucrose at reducing hemolysis when present in the resuspension solution. It is concluded that the PVP is able to prevent swelling and hemolysis of cells which are very permeable to cations by opposing the colloid osmotic pressure due to the hemoglobin. However, this does not explain how PVP is able to protect cells against freezing damage at high cooling rates, and a mechanism by which it might do this is discussed.  相似文献   

3.
A E Woolgar 《Cryobiology》1974,11(1):44-51
Human red blood cells were frozen at temperatures down to ?9 °C in solutions containing sucrose, and the hemolysis on thawing was measured. This was compared with the hemolysis caused by exposing the cells to high concentrations of sucrose and then resuspending them in more dilute solutions at 4 °C. The effects of the hypertonic solutions of sucrose on potassium, sodium, and sucrose movements were also investigated. It was found that sucrose does not prevent damage to the cells by very hypertonic solutions (whether during freezing and thawing or at 4 °C) but it does reduce hemolysis of cells previously exposed to these solutions if present in the resuspension (or thawing) solution. Evidence is presented that the damaging effects of the hypertonic solutions of sucrose occurring during freezing are associated with changes in cell membrane permeability but that posthypertonic hemolysis is not primarily associated with a “loading” of the cells with extracellular solutes in the hypertonic phase. It is concluded that sucrose may reduce hemolysis of red blood cells by slow freezing and thawing by reducing colloid osmotic swelling of cells with abnormally permeable membranes.  相似文献   

4.
5.
The haemolysis of human red blood-cells by freezing and thawing   总被引:24,自引:0,他引:24  
  相似文献   

6.
7.
Manifestations of cell damage after freezing and thawing   总被引:4,自引:1,他引:4  
The nature of the primary lesions suffered by cells during freezing and thawing is unclear, although the plasma membrane is often considered the primary site for freezing injury. This study was designed to investigate the nature of damage immediately after thawing, by monitoring several functional tests of the cell and the plasma membrane. Hamster fibroblasts, human lymphocytes, and human granulocytes were subjected to a graded freeze-thaw stress in the absence of cryoprotective compound by cooling at -1 degree C/min to a temperature between -10 and -40 degrees C, and then were either warmed directly in water at 37 degrees C or cooled rapidly to -196 degrees C before rapid warming. Mitochondrial function in the cells was then assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT), fluorescein diacetate (FDA), colony growth, and osmometric response in a hypertonic solution. Cells behaved as osmometers after cooling at -1 degree C/min to low temperatures at which there were no responses measured by other assays, indicating that the plasma membrane is not a primary site for injury sustained during slow cooling. These results also indicate that the FDA test does not measure membrane integrity, but reflects the permeability of the channels through which fluorescein leaves the cells. Fewer cells could respond osmotically after cooling under conditions where intracellular freezing was likely, implying that the plasma membrane is directly damaged by the conditions leading to intracellular freezing. A general model of freezing injury to nucleated mammalian cells is proposed in which disruption of the lysosomes constitutes the primary lesion in cells cooled under conditions where the cells are dehydrated at low temperatures.  相似文献   

8.
9.
The effect of freezing on the recovery of Chinese hamster tissue cells has been studied by freezing cells at a rate known to give high recovery and comparing these under the electron microscope with nonfrozen trypsinized cells for periods up to 14 hr after treatment. The main areas of damage were the cell surface and the cytoskeletal framework of the cell. The microfilament and microtubule systems underlying the cell membrane were shown to be disrupted in both the frozen and nonfrozen cells but repolymerization and reorganization was shown to be retarded for a longer period in the frozen cells. A greater degree of surface blebbing was observed in the frozen cells and heterochromatin was densely stained. The delay in return of the frozen cell to a normal morphology and physiology may be due to the need for the cell to repair sublethal cell damage before normal physiological processes can continue.  相似文献   

10.
Survival of spores of the fungus Rhizopus nigricans after repeated freezing and thawing was investigated. The cooling rate was 10(4) degrees C/min. Dry spores were fully inactive after 32 repeated shocks. About one-half of spores were killed after 8 repetitions. The water content did not change the resistance, swollen spores reacted to shocks much like dry ones. The sensitivity of spores to freezing-thawing shocks increased considerably when the spores changed from the dormant to the active state. Already after a 30 min cultivation of spores in the nutrient medium two freezing and thawings were sufficient for inactivation of 60% spores. After a 90 min cultivation one freezing and one thawing were sufficient to inactivate practically all spores.  相似文献   

11.
12.
13.
Ultrastructural injury to human spermatozoa after freezing and thawing   总被引:4,自引:0,他引:4  
The ultrastructure of human spermatozoa at various stages of the freezing and thawing process was studied. In addition to conventional fixations, a freeze-substitution method was used to examine spermatozoa before they were thawed. Dilution in a glycerol-egg yolk-citrate medium caused slight swelling of the acrosome. During slow freezing, when large ice crystals grow in the diluent, the sperm plasmalemma became tighter, the mitochondria had more angular profiles and there was a reduction in electron density of the acrosomal contents. After thawing, the apical segment of the acrosome usually became swollen and the mitochondria appeared rounded. We deduce that these ultrastructural changes occur either during or after the thawing procedure.  相似文献   

14.
15.
16.
17.
Fibroblast strains established from donors differing in age, sex, and genetic disease were frozen and thawed under variable conditions and cell survival was determined. The cell density of the monolayer prior to freezing was found to be the most important parameter for optimal cell recovery after freezing to ?196 °C and thawing. We obtained the best results with exponentially growing cells at about half the individual saturation density. Cell recovery was influenced neither by parameters defined by the donor of the skin biopsy, nor by the number of passages during the exponential growth phase, nor by repeated trypsinization and freezing. Application of different linear cooling velocities which were attained by a novel programmable freezing system yielded similar cell survival rates within a wide range from 0.05 to 10 °C/min.  相似文献   

18.
19.
D W Janssen  F F Busta 《Cryobiology》1973,10(5):386-392
Fast freezing and slow thawing of Salmonella anatum cells in nonfat milk solids resulted in about 20% death and 50% injury of the cells surviving the treatment. Death was defined as the inability to form colonies on a nonselective plating medium [xylose-lysine-peptone agar (XLP)] after freezing and thawing. Injury was defined as the inability to form colonies on a selective plating medium (XLP with 0.2% sodium desoxycholate added). The injured cells repaired rapidly and within 2 hr at 25 °C, in the presence of 0.1% milk solids; all the injured cells regained the ability to form colonies on the selective medium. The treated cells showed a 1-hr extended lag phase of growth as compared to the unfrozen cells. Milk solids concentration in the freezing and repair menstrua influenced injury, repair of injury, and death. The repair process was affected by the pH and temperature of environment in which the injured cells were incubated. Maximum repair occurred at pH values between 6.0 and 7.4 and temperatures from 25 to 42 °C. The data suggested repair did not require the synthesis of protein, ribonucleic acid, or cell-wall mucopeptide but did require energy synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号