首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium activation of the ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity of cardiac actomyosin reconstituted from bovine cardiac myosin and a complex of actin-tropomyosin-troponin extracted from bovine cardiac muscle at 37 degrees C was studied and compared with similar proteins from rabbit fast skeletal muscle. The proteins of the actin complex were identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Half-maximal activation of the cardiac actomyosin was seen at a calcium concentration of 1.2 +/- 0.002 (S.E. of mean) muM. A hybridized reconstituted actomyosin made with cardiac myosin and the actin-tropomyosin-troponin complex extracted from rabbit skeletal muscle was also activated by calcium but the half-maximal value was shifted to 0.65 +/- 0.02 (S.E. of mean) muM Ca2+. Homologous rabbit skeletal actomyosin showed half-maximal activation at 0.90 +/- 0.01 (S.E. of mean) muM Ca2+ and the value for a hybridized actomyosin made with rabbit skeletal myosin and the actin-complex from cardiac muscle was found at 1.4 +/- 0.03 (S.E. of mean) muM Ca2+ concentration. Kinetic analysis of the Ca2+ activated ATPase activity of reconstituted bovine cardiac actomyosin indicated some degree of cooperativity with respect to calcium. Double reciprocal plots of reconstituted actomyosins made with bovine cardiac actin complex were curvilinear and significantly different than those of reconstituted actomyosins made with the rabbit fast skeletal actin complex. The Ca2+-dependent cooperativity was of a mixed type as determined from Hill plots for homologous reconstituted bovine cardiac and rabbit fast skeletal actomyosin. The results show that cooperative interactions in reconstituted actomyosins were greater when the actin-tropomyosin-troponin complex was derived from cardiac than skeletal muscle.  相似文献   

2.
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  相似文献   

3.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

4.
Using glutaric dialdehyde, the muscle proteins myosin, actin, actomyosin and heavy meromyosin subfragment-1 (S-1) have been immobilized on capron fibers. The ATPase activity of myosin and its capability to interact with actin have been preserved whereas the ATPase activity of its subfragment decreased significnatly. Immobilization on capron fibers changes the pH dependence of the ATPase activity of myosin and of S-1 shifting the maximum towards the acid zone (pH 5.5) and increases the thermal stability of the enzyme. Calcium ions produce a stimulatory effect on ATPase; Mg2+ions yield no effect on myosin and S-1 but enhance the activity in the case of immobilized actomyosin though to a lesser degree than the ions of Ca2+. Immobilized actin retains its ability to form actomyosin complex.  相似文献   

5.
Myosin was purified from ovine uterine smooth muscle. The 20,000 dalton myosin light chain was phosphorylated to varying degrees by an endogenous Ca2+ dependent kinase. The kinase and endogenous phosphatases were then removed via column chromatography. In the absence of actin neither the size of the initial phosphate burst nor the steady state Mg2+-dependent ATPase activity were affected by phosphorylation. However, phosphorylation was required for actin to increase the Mg2+-dependent ATPase activity and for the myosin to superprecipitate with actin. Ca2+ did not affect the Mg2+-dependent ATPase activity in the presence or absence of action or the rate or extent of superprecipitation with actin once phosphorylation was obtained. These data indicate that: 1) phosphorylation of the 20,000 dalton myosin light chain controls the uterine smooth muscle actomyosin interaction, 2) in the absence of actin, phosphorylation does not affect either the ATPase of myosin or the size of the initial burst of phosphate and, 3) Ca2+ is important in controlling the light chain kinase but not the actomyosin interaction.  相似文献   

6.
Dinitrophenylated reconstituted or natural actomyosin effected changes in the Ca2+ sensitivity which were dependent upon the ionic strength of the reaction medium. Dinitrophenylation of reconstituted actomyosin in 0.6 M KCl led to the incorporation of 2-6 mol of the reagent per 5-10(5) g of protein and it possessed considerable Ca2+ sensitivity. Dinitrophenylated natural actomyosin under the same conditions lost most of its Ca2+ sensitivity when 1.3-5.4 mol of the dinitrophenyl group were bound. The myosin from these modified actomyosins did not lose Ca2+ sensitivity and the myosin was labeled only with 0.4-1.7 mol of the dinitrophenyl group. Dinitrophenylation of both kinds of actomyosin in 0.06 M KCl abolished the Ca2+ sensitivity; the myosin from the modified actomyosins also lost Ca2+ sensitivity. Myosin alone was more susceptible to a loss of Ca2+ sensitivity than myosin in actomyosin. Actin protected the ability of myosin to sense Ca2+ regulated actin in modified actomyosin at 0.6 M KCl but not at 0.06 M KCl. Actomyosin dinitrophenylated in the presence of ATP lost Ca2+ sensitivity. However, the myosin from this actomyosin possessed Ca2+ sensitivity. Thiolysis of the dinitrophenylated actomyosin by 2-mercaptoethanol at low ionic strength did not restore the Ca2+ sensitivity of this actomyosin or its myosin although there was a significant loss of the dinitrophenyl group.  相似文献   

7.
R J Heaslip  S Chacko 《Biochemistry》1985,24(11):2731-2736
There are conflicting reports on the effect of Ca2+ on actin activation of myosin adenosine-triphosphatase (ATPase) once the light chain is fully phosphorylated by a calcium calmodulin dependent kinase. Using thiophosphorylated gizzard myosin, Sherry et al. [Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., & Hartshorne, D. J. (1978) Biochemistry 17, 4417-4418] observed that the actin activation of ATPase was not inhibited by the removal of Ca2+. Hence, it was suggested that the regulation of actomyosin ATPase activity of gizzard myosin by calcium occurs only via phosphorylation. In the present study, phosphorylated and thiophosphorylated myosins were prepared free of kinase and phosphatase activity; hence, the ATPase activity could be measured at various concentrations of Ca2+ and Mg2+ without affecting the level of phosphorylation. The ATPase activity of myosin was activated either by skeletal muscle or by gizzard actin at various concentrations of Mg2+ and either at pCa 5 or at pCa 8. The activation was sensitive to Ca2+ at low Mg2+ concentrations with both actins. Tropomyosin potentiated the actin-activated ATPase activity at all Mg2+ and Ca2+ concentrations. The calcium sensitivity of phosphorylated and thiophosphorylated myosin reconstituted with actin and tropomyosin was most pronounced at a free Mg2+ concentration of about 3 mM. The binding of 125I-tropomyosin to actin showed that the calcium sensitivity of ATPase observed at low Mg2+ concentration is not due to a calcium-mediated binding of tropomyosin to F-actin. The actin activation of both myosins was insensitive to Ca2+ when the Mg2+ concentration was increased above 5 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
C Y Wang  P K Ngai  M P Walsh  J H Wang 《Biochemistry》1987,26(4):1110-1117
Fodrin, a spectrin-like actin and calmodulin binding protein, was purified to electrophoretic homogeneity from a membrane fraction of bovine brain. The effect of fodrin on smooth muscle actomyosin Mg2+-ATPase activity was examined by using a system reconstituted from skeletal muscle actin and smooth muscle myosin and regulatory proteins. The simulation of actomyosin Mg2+-ATPase by fodrin showed a biphasic dependence on fodrin concentration and on the time of actin and myosin preincubation at 30 degrees C. Maximal stimulation (50-70%) was obtained at 3 nM fodrin following 10 min of preincubation of actin and myosin. This stimulation was also dependent on the presence of tropomyosin. In the absence of myosin light chain kinase, the fodrin stimulation of Mg2+-ATPase could not be demonstrated with normal actomyosin but could be demonstrated with acto-thiophosphorylated myosin, suggesting that fodrin stimulation depends on the phosphorylation of myosin. Fodrin stimulation was shown to require the presence of both Ca2+ and calmodulin when acto-thiophosphorylated myosin was used. These observations suggest a possible functional role of fodrin in the regulation of smooth muscle contraction and demonstrate an effect on Ca2+ and calmodulin on fodrin function.  相似文献   

9.
Troponin and its components from ascidian smooth muscle   总被引:3,自引:0,他引:3  
Troponin was isolated from the thin filaments of ascidian smooth muscle and separated into three components by ion-exchange chromatography, the molecular weights of which were 33,000, 24,000, and 18,000, respectively. The three components were designated as troponin t (TN-T), troponin I (TN-I), and troponin C (TN-C) in order of molecular weight, since each component had properties similar to those of the respective components of vertebrate skeletal-muscle troponin. The ascidian troponin or the mixture of the three components conferred Ca2+-sensitivity on reconstituted rabbit actomyosin in the presence of tropomyosin. One of the characteristics of the ascidian troponin was Ca2+-dependent activation of actin-myosin interaction in collaboration with tropomyosin, whereas its inhibitory action on the actomyosin ATPase in the absence of Ca2+ was less remarkable. From this, it is concluded that in the ascidian smooth muscle actin-myosin interaction is regulated by an actin-linked troponin-tropomyosin system, but the ascidian troponin acts as a Ca2+-dependent activator of an actomyosin system.  相似文献   

10.
The effects of purealin isolated from the sea sponge, Psammaplysilla purea, on the enzymatic properties of myosin and natural actomyosin (a complex of myosin, actin, tropomyosin and troponin) from canine cardiac ventricle were studied. Purealin increased the ATPase activity of natural actomyosin and the actin-activated ATPase activity of myosin, and accelerated the superprecipitation of natural actomyosin. The Ca2+- and Mg2+-ATPase activities of myosin were inhibited by purealin, whereas the K+-EDTA-ATPase activity was increased. These results suggest that purealin binds to the myosin portion involved in actin-myosin interaction and increases the actin-activated ATPase activity of myosin.  相似文献   

11.
The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B.  相似文献   

12.
Troponins which confer Ca-sensitivity to skeletal actomyosin ATPase were successfully isolated from striated and smooth adductor muscles of "Akazara" scallop (Chlamys nipponensis akazara). SDS-gel electrophoresis showed that striated and smooth adductor troponins were composed of three components having molecular weights of about 52K (52,000), 40K, and 20K, and about 40K, 21K, and 20K, respectively. The Mg-ATPase activity of actomyosin reconstituted from rabbit actin and either Akazara striated adductor myosin or smooth adductor myosin, along with the respective tropomyosin and troponin, indicated that the Ca2+ concentration required for the activation of actomyosin ATPase appeared to be favorable to myosin-linked regulation.  相似文献   

13.
Calcium-sensitive modulation of the actomyosin ATPase by fodrin   总被引:3,自引:0,他引:3  
Fodrin, a spectrin-like protein isolated from brain, is a long flexible molecule which binds calmodulin and cross-links F-actin. The effects of fodrin on the actin-activated ATPase of myosin have been examined. When added after ATP, fodrin inhibited the actomyosin ATPase. Two to three times as much fodrin was required for inhibition in the presence of Ca2+ as in its absence. Complete inhibition in the absence of Ca2+ occurred at about one fodrin to 200 actins. Inhibition does not appear to result from fodrin cross-linking F-actin, and, thereby, preventing the myosin filaments from reaching the actin filaments; but cross-linking may promote inhibition by trapping the myosin filaments within the cross-linked F-actin. When added before ATP, fodrin stimulated the actomyosin ATPase almost 3-fold in the presence of Ca2+ and by less than 50% in the absence of Ca2+. Stimulation is thought to result from fodrin cross-linking F-actin. After several minutes the stimulations in Ca2+ were greatly reduced, and in the absence of Ca2+ the actomyosin ATPases were substantially inhibited. Whether added before or after ATP, fodrin inhibited the actin-activated ATPase of myosin subfragment 1. This inhibition was also slightly Ca2+ sensitive.  相似文献   

14.
The contractile and regulatory proteins of insect flight muscle   总被引:9,自引:2,他引:7       下载免费PDF全文
1. Myosin, actin and the regulatory proteins were prepared from insect flight muscle. 2. The light subunit composition of the myosin differed from that of vertebrate muscle myosin. The ionic strength and pH dependence of the myosin adenosine triphosphatase (ATPase) were measured. 3. Actin was associated with a protein of subunit molecular weight 55000 and was purified by gel filtration. Impure actin had protein bound at a periodicity of about 40nm. 4. Regulatory protein extracts had tropomyosin and troponin components of subunit molecular weight 18000, 27000 and 30000. Crude extracts of regulatory proteins inhibited the ATPase activity of desensitized or synthetic actomyosin; this inhibition was relatively insensitive to high Ca(2+) concentrations. Purified insect regulatory protein produced as much sensitivity to Ca(2+) as did the rabbit troponin-tropomyosin complex. 5. Synthetic actomyosins were made from rabbit and insect proteins. Actomyosins containing insect myosin had a low ATPase activity that was activated by tropomyosin. The Ca(2+) sensitivity of actomyosins containing insect myosin or actin, with added troponin-tropomyosin complex from rabbit, was comparable with that of rabbit actomyosin.  相似文献   

15.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

16.
Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.  相似文献   

17.
Myosin was rapidly prepared from the slime mould, Physarum polycephalum to a high level of homogeneity (greater than 95%), in a high yield (about 10 mg/100 g tissue) and in a phosphorylated state (about 5 mol phosphate/mol of 500,000 Mr myosin). Actin activated the Mg-ATPase activity of this myosin in the absence of Ca2+ about 30-fold, and this actin-activated ATPase activity was reduced to about 20% of the original activity when Ca2+ concentration was increased to 50 microM, i.e., the actin-myosin-ATP interactions show Ca-inhibition. The Ca2+ concentration giving half-maximum inhibition was 1-3 microM. The Ca-inhibition was clearly observed at physiological concentrations of Mg2+ but was obscured at both lower and higher concentrations of Mg2+. The Ca-inhibitory effect on ATP hydrolysis by actomyosin reconstituted from skeletal actin and Physarum myosin was quick and reversible. Ca-binding measurement showed that myosin bound Ca2+ with half-maximal binding at 2 microM Ca2+ and maximum binding of 2 mol per mol myosin, indicating that Ca2+ may inhibit the ATPase activity by binding to myosin. The involvement of this myosin-linked regulatory system in the Ca2+ -control of cytoplasmic streaming is discussed.  相似文献   

18.
Using a reconstituted system in which myosin was preferentially phosphorylated, we examined the regulatory action of caldesmon150 on the smooth muscle actin-myosin interaction. Caldesmon150 inhibited the tropomyosin-enhanced actomyosin ATPase activity in a Ca2+-independent manner. This inhibitory effect of caldesmon150 was observed to be overcome by the addition of calmodulin in a Ca2+-dependent manner. In accordance with the observations of ATPase activity, we demonstrated evidence that the regulatory action of caldesmon150 on the actin site was mainly through control of the tropomyosin-enhanced actin-myosin interaction and calmodulin confers the Ca2+-sensitivity upon the caldesmon150 action determined by the cosedimentation method.  相似文献   

19.
The influence of the DTNB light chain of myosin on its enzymatic activities was examined by studying the superprecipitation of actomyosin and the actin-activated ATPase of heavy meromyosin (HMM) [EC 3.6.1.3]. Although the Ca2+-, Mg2+-, and EDTA-ATPase activities of control and DTNB myosin were practically the same, the superprecipitation of actomyosin prepared from actin and DTNB myosin occurred more slowly than that of control myosin. The apparent binding constant obtained from double-reciprocal plots of actin-activated ATPase of DTNB HMM was lower than that of control HMM. Recombination of DTNB myosin and HMM with DTNB light chains restored the original properties of myosin and HMM. The removal of DTNB light chain from myosin had no effect on the formation of the rigor complex between actin and myosin. These results suggest that the DTNB light chain participates in the interaction of myosin with actin in the presence of ATP.  相似文献   

20.
Approximately 8-10 mg of highly actin-activatable, CA2+-sensitive Acanthamoeba myosin II can be isolated in greater than 98% purity from 100 g of amoeba by the new procedure described in detail in this paper. The enzyme isolated by this procedure can be activated by actin because its heavy chains are not fully phosphorylated (Collins, J. H., and Korn, E. D. (1980) J. Biol Chem. 255, 8011-8014). We now show that Acanthamoeba myosin II Mg2+-ATPase activity is more highly activated by Acanthamoeba actin than by muscle actin. Also, actomyosin II ATPase is inactive at concentrations of free Mg2+ lower than about 3 mM and fully active at Mg2+ concentrations greater than 4 mM. Actomyosin II Mg2+-ATPase activity is stimulated by micromolar Ca2+ when assayed over the narrow range of about 3-4 mM Mg2+ but is not affected by Ca2+ at either lower or higher concentrations of Mg2+. The specific activity of te actomyosin II Mg2+-ATPase also increases with increasing concentrations of myosin II when the free Mg2+ concentration is in the range of 3-4 mM but is independent of the myosin II concentration at lower or higher concentrations of Mg2+ . This marked effect of the Mg2+ concentration on the Ca2+-sensitivity and myosin concentration-dependence of th specific activity of actomyosin II ATPase activity does not seem to be related to the formation of myosin filaments, and to be related to the formation of myosin filaments, and myosin II is insoluble only at high concentrations of free Mg2+ (6-7 mM) were neither of these effects is observed. Also, the Mg2+ requirements for actomyosin II ATPase activity and myosin II insolubility can be differentially modified by EDTA and sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号