首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The cell population kinetics of the epidermis were studied in 4-month-old pigs. Mitotic figures were confined to the basal cell (L1) and the first suprabasal cell layer (L2). The mitotic index (MI) was 0.17 ± 0.04% for L1 and 0.08 ± 0.03% for L2. Labelled nuclei were distributed throughout the viable epidermis, the majority (79.1 ± 1.1%) were in L1 with 19.5 ± 1.2% in L2. The labelling indices (LI) in layers L1 and L2 were 7.1 ± 0.4% and 3.4 ± 0.1%, respectively. After labelling with two injections of tritiated thymidine [3H]TdR separated by 90 min, the LI increased to 8.2 ± 0.3% in L1 and to 4.0 ± 0.2% in L2. This increased labelling confirmed that cell proliferation occurs in both layers, L1 and L2, of the epidermis.
The cell production rate ( K ) in L1 and L2 had an upper limit of 10.7 ± 1.0 and 6.2 + 1.8 cells per 1000 cells per hour respectively. The cell flow rate per hour (cell flux), into and out of the DNA synthesis phase (S), and the duration of DNA synthesis were determined from double-labelling studies with [3H]TdR and [14C]TdR. The cell flux into and out of S was identical and was calculated as 0.6 ± 0.1%/hr (L1) and 0.5 ± 0.1%/hr (L2). Values for t S varied from 8 to 10 hr. The cell turnover times ( t T) were in the range 89–129 hr and 180–261 hr for L1 and L2, respectively.
Log normal curves were fitted to the fraction labelled mitoses data for L1 and L2. Values for t S for cells in L1 and L2 were 9.8 hr and 11.9 hr, respectively. t G2+ 1/2 t M was 7.2 hr in L1 and 9.1 hr in L2.  相似文献   

2.
3.
4.
5.
6.
A model of steady-state erythropoiesis in the guinea pig is described. The model incorporates an unidentified progenitor compartment, as well as compartments representing proerythroblasts, basophilic, polychromatic and orthochromatic cells. A computer representation of the model permits a simulation of the labeling curves obtained in pulse and intermittent labeling regimes. It was found that a reasonable fit to the data can be achieved when the parameters for the various compartments are essentially identical. The results of a preliminary sensitivity analysis, carried out by perturbing the duration of S phase from the best fit value, are reported. The fit achieved to the data supports the hypothesis underlying the model that each compartment corresponds to one generation and that the flux within and between compartments is sequential.  相似文献   

7.
8.
9.
Glucosylceramides of pig epidermis: structure determination   总被引:1,自引:0,他引:1  
Six series of glucosylceramides from pig epidermis have been identified, and their structures have been determined. The structural types identified are: 1, N-acylglucosylsphingosines (33%); 2, N-acylglucosylphytosphingosines (13%); 3, N-(omega-hydroxyacyl)-glucosylsphingosines (3%); 4, N-(alpha-hydroxyacyl)-glucosylphingosines (15%); 5, N-(alpha-hydroxyacyl)-glucosylsphingosines (16%); 6, N-(alpha-hydroxyacyl)-glucosylphytosphingosines (20%). The 4th and 5th classes of glucosylceramides differ in that the former contains mostly 24- to 28-carbon alpha-hydroxyacids, while the latter contains mostly alpha-hydroxypalmitic acid.  相似文献   

10.
Cell kinetics in the jejunal crypt of the male Wistar rat were studied using autoradiographic techniques with tritiated thymidine and a stathmokinetic technique with vincristine. The migration rate measured by following the movement of the 50% peak on the labelling index distribution curve with time after injection of tritiated thymidine gave a value of 1-43 +/- 0-14 (SE) cell positions per hour, compared with a value from a cumulative birth rate of 1-78 cell positions per hour. Tht crypt column length was 32-9 +/- 0-2 cells and the column count was 22-3 +/- 0-2. This measurement gave a total crypt population of 734 cells, compared with an estimate of 650 +/- l from direct observation of squashed, microdissected crypts. In each crypt 22-5 +/- 0-5 mitoses were present, and the crypt cell production rate was 32 cells per crypt per hour; this latter value was confirmed using two independent techniques. The crypt growth fraction calculated from the durations of phases of the cell cycle and the labelling index was 0-62. A value of 0-61 was found from the labelling index distribution curve. As assessed from crypt squashes, there were 403 proliferating cells per crypt.  相似文献   

11.
Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed.  相似文献   

12.
13.
The dividing lens epithelium of 8-week-old CF1 mice consists of a monocellular layer of about 31,000 cells and does not include the postmitotic cells of the meridional rows and another postmitotic zone of seven cell positions' width immediately anterior to the rows. The latter two populations contain approximately 3,600 and 9,000 cells, respectively, for a total of 44,000 cells in the entire lens epithelium. Autoradiographic analysis based upon mitotic index and cell cycle times indicates that the epithelium produces 207 new lens fibers a day. Throughout the 20-day period of study, labeled cells appeared almost entirely as pairs following a single dose of 3H-thymidine and clusters of labeled nuclei were not seen. Moreover, the number of labeled cells dropped only slowly with time, as did the grain counts. These observations indicate that logarithmic division “cascade” does not occur in the lens. The dividing cell population consists largely of a slowly cycling stem cell group, dividing once about every 17–20 days, and consisting of some 5,000 cells. A subpopulation may exist which undergoes two rapid consecutive divisions before becoming postmitotic, but this is too small to make a significant contribution to lens fiber production. Four days are required to transit the postmitotic zone, and an additional 43 or so are needed to transit the meridional rows and differentiate into anucleate lens fibers. Data from other laboratories indicate that the entire process, from mitosis to final differentiation, requires about 4 months. Hence, most of this time is spent in migration of nondividing cells.  相似文献   

14.
Median S-phase lengths of pinna epidermis and sebaceous glands, and of epithelia from the oesophagus and under surface of the tongue of Albino Swiss S mice were estimated by the percentage labelled mitoses method (PLM). The 18.4 and 18,8 hr for the median length of S-phase for pinna epidermis and sebaceous glands respectively made it possible for these two tissues to be used experimentally for testing tissue specificity in chalone assay experiments. The 10.0 and 11.5 hr for oesophagus ang tongue epithelium respectively made experimental design for chalone assay difficult when pinna epidermis was the target tissue. The results of the Labelling Index measured each hour throughout a 24-hr period showed no distinct single peaked diurnal rhythm for pinna epidermis and sebaceous glands. Instead a circadian rhythm with several small peaks occurred which would be expected if an S-phase of approximately 18 hr was imposed on the diurnal rhythm. This indicates that there may be very little change in the rate of DNA synthesis. The results are given for the assay in vivo of purified epidermal G1 and G2 chalones, and the 72--81% ethanol precipitate of pig skin from which they could be isolated. These experiments were performed over a time period which took into account the diurnal rhythm of activity of the mice as well as the S-phase lengths. Extrapolating the results with time of action of the chalone shows that the G1 chalone acts at the point of entry into DNA synthesis and that the S-phase length was approximately 17 hr for both the pinna epidermis and sebaceous glands. This may be a more correct value since the PLM method overestimates the median S-phase length as it is known that in pinna skin the [3H]TdR is available to the tissues for 2 hr and true flash labelling does not take place. The previous reports that epidermal G1 chalone acts some hours prior to entry into S-phase resulted from experiments on back skin where the S-phase is shorter and there is a pronounced diurnal rhythm which could mask the chalone effect. The epidermal G2 chalone had no effect on DNA synthesis even at different times in the circadian rhythm. Thus the circadian rhythms and S-phase lengths of the test tissues need to be considered when experiments are performed with chalones. Ideally, the target tissues selected for cell line specificity tests should have the same cell kinetics for the easier and more accurate assessment and interpretation of results. When the tissues have markedly different cell kinetics, experimental procedures and results need to be evaluated accordingly. The point of action of G1 chalone can only be assessed if the effect is measured over the peak of incorporation of [3H]TdR into DNA. The results of the effects of skin extracts are analysed in relation to changes in the availability of [3H]TdR for the incorporation into DNA and to the possibility of there being two distinct populations of proliferating cells.  相似文献   

15.
16.
Abstract. T cell population kinetics of thyroid follicular cells in rats were studied by means of autoradiography and a statmokinetic technique. During the first fortnight after birth no significant changes in the mitotic index (MI) and labelling index (LI) were found. In the next 2 weeks a constant decrease in the number of proliferating cells occurs. In 10-day old animals 40% of the follicular cells were in the cell cycle (GF); 3.25 ± 0.77 (SEM) % in the S phase and 0.18 ± 0.04% in mitoses (MI). Day–night changes in the LI and mitotic rate (MR) indicated a peak value at 13.30 hours with a lowest value at 22.30 hours. The mean LI and MR averaged over the whole 24 hr were 3.1 ± 0.1% and 122.2 ± 18.1%, respectively. In 10-day old animals, using the fraction of labelled mitoses (FLM) method the median cell cycle time ( T C) was 79 hr and the phase durations were T G1—64.6 hr, T s—8.2 hr and T G2—5.1 hr. The decrease in the number of proliferating cells with the age of the animals is considered to be a result of both cell cycle prolongation and in growth fraction reduction.  相似文献   

17.
The proliferation kinetics and DNA content of thyroid follicular cells in rats were studied by autoradiography and cytophotometry. Continuous treatment of animals with methylthiouracil (MTU) results in hyperplasia followed by tumour growth in the thyroid gland. The mitotic index (MI) increases from 0.006 +/- 0.002% in controls to 0.13 +/- 0.06% in hyperplasia and to 0.09 +/- 0.03% in malignant cells. The same is true for the labelling index (LI) which rises from 0.08 +/- 0.003% in controls to 1.4 +/- 1.1% in hyperplasia and to 1.0 +/- 0.6% in follicular adenomas. The S-phase duration (TS) is shortened from 8.0 +/- 1.2 hr in controls to 6.0 +/- 1.4 hr in animals treated for 9 months with MTU and prolonged to 15.4 +/- 2.1 hr in papillary carcinomas. In all MTU-treated animals a decrease in the value of the potential population doubling time (TPD) and thyroid weight doubling time (TD) was observed. The cell loss factor (phi) decreases in animals treated for 3 months with MTU and increases during the stage of tumour growth in the gland (animals treated 12-15 months with MTU). DNA measurements in the nuclei of hyperplastic and neoplastic thyroid tissues reveal cells with values exceeding that in control animals. However, no difference was found in the DNA content between thyroid adenomas and carcinomas, nor between thyroid hyperplasia and neoplasia.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号