首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The precise mechanism by which CsA causes renal injury is not known. Reactive oxygen species (ROS) have been shown to play a role, since CsA-induced renal lipid peroxidation is attenuated in vivo and in vitro by the concomitant administration of antioxidants such as vitamin E. We show here the effect of the antioxidant melatonin (MLT), a hormone produced by the pineal gland during the dark phase of the circadian cycle, in a model of CsA nephrotoxicity in the isolated and perfused rat kidney. Kidneys isolated from rats were divided into seven groups. At the end of perfusion, malondialdehyde and 4-hydroxyalkenals (MDA+4-HDA), metabolites of nitric oxide N O 2 &#109 +N O 3 &#109 were measured and histopathological examination was performed. CsA treatment induced a significant increase in MDA+4-HDA while not affecting the nitric oxide metabolite level. MLT remarkably prevented glomerular collapse and tubular damage as revealed by morphometric analysis. Our study suggests that lipid peroxidation is an early important event in the pathogenesis of CsA nephrotoxicity and that MLT is able to protect kidneys from CsA at a relatively low concentration.  相似文献   

2.
Lipid peroxidation is a degenerative chain reaction in biological membranes that may be initiated by exposure to free radicals. This process is associated with changes in the membrane fluidity and loss of several cell membrane-dependent functions. 5-methoxytryptophol (ML) is an indole isolated from the mammalian pineal gland. The purpose of this study was to investigate the effects of ML (0. 01mM-10mM) on membrane fluidity modulated by lipid peroxidation. Hepatic microsomes obtained from rats were incubated with or without ML (0.01-10 mM). Then lipid peroxidation was induced by FeCl(3), ADP, and NADPH. Membrane fluidity was determined using fluorescence spectroscopy. Malonaldehyde (MDA) +4-hydroxyalkenals (4-HDA) concentrations were estimated as an indicator of the degree of lipid peroxidation. With oxidative stress, membrane fluidity decreased and MDA+4-HDA levels increased. ML (0.01-3 mM) reduced membrane rigidity and the rise in MDA+4-HDA formation in a concentration-dependent manner. 10 mM ML protected against lipid peroxidation but failed to prevent the membrane rigidity. In the absence of oxidative reagents, ML (0.3-10 mM) decreased membrane fluidity whereas MDA+4-HDA levels remained unchanged. This indicates that ML may interact with membrane lipids. The results presented here suggest that ML may be another pineal indoleamine (in addition to melatonin) that resists membrane rigidity due to lipid peroxidation.  相似文献   

3.
Increased iron stores are associated with free radical generation and carcinogenesis. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of tumor initiation. Melatonin and structurally related indoles are effective in protecting against oxidative stress. The aim of the study was to compare the relative efficacies of melatonin, N-acetylserotonin (NAS), indole-3-propionic acid (IPA), and 5-hydroxy-indole-3-acetic acid (5HIAA) in altering basal and iron-induced lipid peroxidation in homogenates of hamster testes. To determine the effect of the indoles on the autoxidation of lipids, homogenates were incubated in the presence of each agent in concentrations of 0.0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 2.5, or 5.0 mM. To study their effects on induced lipid peroxidation, homogenates were incubated with FeSO(4) (30 microM + H(2)O(2) (0.1 mM) + each of the indoles in the same concentrations as above. The degree of lipid peroxidation was expressed as concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. The indoles decreased both basal and iron-related lipid peroxidation in a concentration-dependent manner. Melatonin reduced basal MDA + 4-HDA levels when used at the concentrations of 0.25 mM or higher, and prevented iron-induced lipid peroxidation at concentrations of 1.0, 2.0, 2.5, or 5.0 mM. The lowest effective concentrations of NAS required to lower basal and iron-related lipid peroxidation were 0.05 mM and 0.25 mM, respectively. IPA, only when used in the highest concentrations of 2.5 mM or 5 mM inhibited basal lipid peroxidation levels and it was ineffective on the levels of MDA + 4-HDA due to iron damage. 5HIAA reduced basal lipid peroxidation when used at concentrations of 0.25 mM or higher, and it prevented iron-induced lipid peroxidation only at the highest applied concentration (5 mM). In conclusion, melatonin and related indoles at pharmacological concentrations protect against both the autoxidation of lipids as well as induced peroxidation of lipids in testes. In doing so, these agents would be expected to reduce testicular cancer that is initiated by products of lipid peroxidation.  相似文献   

4.
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.  相似文献   

5.
The serum concentrations of aluminum, a metal potentially involved in the pathogenesis of Alzheimer's disease, increase with age. Also, intense and prolonged exposure to aluminum may result in dementia. Melatonin and pinoline are two well known antioxidants that efficiently reduce lipid peroxidation due to oxidative stress. Herein, we investigated the effects of melatonin and pinoline in preventing aluminum promotion of lipid peroxidation when the metal was combined with FeCl3 and ascorbic acid in rat synaptosomal membranes. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenal (4-HDA) concentrations in the membrane suspension. Under the experimental conditions used herein, the addition of aluminum (0.0001 to 1 mmol/L) enhanced MDA + 4-HDA formation in the synaptosomes. Melatonin and pinoline reduced, in a concentration-dependent manner, lipid peroxidation due to aluminum, FeCl3 and ascorbic acid in the synaptosomal membranes. These results suggest that the indoleamine melatonin and the beta-carboline pinoline may potentially act as neuroprotectant agents in the therapy of those diseases with elevated aluminum concentrations in the tissues.  相似文献   

6.
CyclosporinA (CsA) is an immunosuppressive drug which induces severe adverse effects such as cardiotoxicity and nephrotoxicity. In several therapeutic protocols CsA is used in association with corticosteroids to obtain better therapeutic results. Recently, our studies showed that CsA increases blood pressure while inhibit Nitric Oxide (NO) production in vivo. In this study we evaluated in rat cardiomyocytes the effects of CsA, used alone or in association with Hydrocortisone (HY), on intracellular calcium concentration, NO production and lipid peroxidation (MDA level). Our results demonstrated that CsA increased intracellular calcium and such effect was dose-dependent. HY used alone, slightly decreased intracellular calcium, while dramatically reduced CsA-induced calcium fluxes. CsA (3.2 microM) increased lipid peroxidation and this effect was blunted by HY. Both CsA and HY inhibited NO production in rat cardiomyocytes acting on this pathway synergically. Our results demonstrated that in rat cardiomyocytes, CsA toxicity is due to a calcium overload, which in turn induce lipid peroxidation and determines oxidative stress-induced cell injury. Treatment with HY effectively inhibits CsA-induced toxicity, decreasing lipid peroxidation as well as calcium intracellular concentration. Our findings seem to suggest that glucocorticoids may be effective in reducing CsA-induced cardiotoxicity at concentrations which are consistent with current therapeutic doses.  相似文献   

7.
In this study, the modulator effect of caffeic acid phenethyl ester (CAPE) on the oxidative nephrotoxicity of gentamicin in the kidneys of rats was investigated by determining indices of lipid peroxidation and the activities of antioxidant enzymes as well as by histological analyses. Forty female Wistar albino rats were randomly divided into four groups, namely control, gentamicin, CAPE, and gentamicin plus CAPE. On the 12th day of the study, all rats were sacrificed and then blood samples and kidneys were taken. Lipid peroxidation and nitric oxide levels, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) enzyme activities, and histological evaluation were measured in kidneys of rats. Levels of blood urea nitrogen and creatinine were studied in serum. CAPE with gentamicin caused decreases in lipid peroxidation, nitric oxide, urea nitrogen, and creatinine levels, although it caused increases in CAT, GSH-Px, and SOD activities when compared with gentamicin alone. In addition, on histological evaluation, the renal damage caused by gentamicin alone appeared much higher than that caused by CAPE plus gentamicin. It is concluded that oxidative stress plays a critical role in causing gentamicin nephrotoxicity and that this nephrotoxicity may be significantly reduced by CAPE.  相似文献   

8.
Prolonged exposure to excessive aluminium (Al) concentrations is involved in the ethiopathology of certain dementias and neurological disorders. Melatonin is a well-known antioxidant that efficiently reduces lipid peroxidation due to oxidative stress. Herein, we investigated in synaptosomal membranes the effect of melatonin in preventing Al promotion of lipid and protein oxidation when the metal was combined with FeCl3 and ascorbic acid. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations in the membrane suspension and protein carbonyls were measured in the synaptosomes as an index of oxidative damage. Under our experimental conditions, the addition of Al (0.0001–1 mmol/L) enhanced MDA+4-HDA formation in the synaptosomes. In addition, Al (1 mmol/L) raised protein carbonyl contents. Melatonin reduced, in a concentration-dependent manner, lipid and protein oxidation due to Al, FeCl3 and ascorbic acid in the synaptosomal membranes. These results show that melatonin confers protection against Al-induced oxidative damage in synaptosomes and suggest that this indoleamine may be considered as a neuroprotective agent in Al toxicity because of its antioxidant activity.  相似文献   

9.
Nitric oxide as an antioxidant.   总被引:21,自引:0,他引:21  
Benzoate monohydroxy compounds, and in particular salicylate, were produced during interaction of ferrous complexes with hydrogen peroxide (Fenton reaction) in a N2 environment. These reactions were inhibited when Fe complexes were flushed, prior to the addition in the model system, by nitric oxide. Methionine oxidation to ethylene by Fenton reagents was also inhibited by nitric oxide. Myoglobin in several forms such as metmyoglobin, oxymyoglobin, and nitric oxide-myoglobin were interacted with an equimolar concentration of hydrogen peroxide. Spectra changes in the visible region and the changes in membrane (microsomes) lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBA-RS) were determined. The results showed that metmyoglobin and oxymyoglobin were activated by H2O2 to ferryl myoglobin, which initiates membrane lipid peroxidation; but not nitric oxide-myoglobin, which, during interaction with H2O2, did not form ferryl but metmyoglobin which only poorly affected lipid peroxidation. It is assumed that nitric oxide, liganded to ferrous complexes, acts to prevent the prooxidative reaction of these complexes with H2O2.  相似文献   

10.
Although the pathogenesis of ischemia reperfusion (IR) injury is based on complex mechanisms, free radicals play a central role. We evaluated membrane fluidity and lipid peroxidation during pancreas transplantation (PT) performed in 12 pigs (six donors and six recipients). Fluidity was measured by fluorescence spectroscopy, and malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations were used as an index of lipid oxidation. Pancreatic tissues were collected as follows: (A) donor, immediately before vascular clamping; (B) graft, following perfusion lavage with University of Wisconsin preservation fluid; (C) graft, after 16?h of cold ischemia; and (D) recipient, 30?min vascular postreperfusion. Fluidity and MDA and 4-HDA concentrations were similar in cases A, B, and C. However, there was significant membrane rigidity and increased lipid peroxidation after reperfusion (D). These findings suggest that reperfusion exaggerates oxidative damage and may account for the rigidity in the membranes of allografts during PT.  相似文献   

11.
The indoleamine melatonin and the synthetic antiestrogenic drug tamoxifen seem to have similar mechanisms in inhibiting the growth of estrogen receptor positive breast cancer cells. In this study, we compared the ability of these molecules, alone and in combination, in stabilizing microsomal membranes against free radical attack. Hepatic microsomes were obtained from male rats and incubated with or without tamoxifen (50–200 μm), melatonin (1 mm) or both; lipid peroxidation was induced by addition of FeCl3, NADPH and ADP. After oxidative damage, membrane fluidity, measured by fluorescence polarization techniques, decreased whereas malonaldehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations increased. Incubation of the microsomes with tamoxifen prior to exposure to free radical generating processes inhibited, in a dose-dependent manner, the increase in membrane rigidity and the rise in MDA+4-HDA levels. When melatonin was added, the efficacy of tamoxifen in preventing membrane rigidity was enhanced. Thus, the IC50s for preventing membrane rigidity and for inhibiting lipid peroxidation obtained for tamoxifen in the presence of melatonin were lower than those obtained with tamoxifen alone. Moreover, tamoxifen (50–200 μm) in the presence of melatonin reduced basal membrane fluidity and MDA+4-HDA levels in microsomes. These synergistic effects of tamoxifen and melatonin in stabilizing biological membranes may be important in protecting membranes from free radical damage. Received: 7 July 1997/Revised: 12 November 1997  相似文献   

12.
Intraperitoneal (IP) injection of ferric nitrilotriacetate (Fe-NTA) to rats and mice results in iron-induced free radical injury and cancer in kidneys. We sought to clarify the exact localization of acute oxidative damage in Fe-NTA-induced nephrotoxicity by performing immunogold light and electron microscopic (EM) techniques using an antibody against 4-hydroxy-2-nonenal (HNE)-modified proteins. Biochemical assays were done to provide complementary quantitative data. Renal accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde (MDA) and 4-hydroxy-2-alkenals (4-HDA), increased in parallel with protein carbonyl content, an indicator of protein oxidation, 30 min after administration of Fe-NTA. Immunogold light microscopy showed that HNE-modified proteins increased at 30 min with positivity localized to proximal tubular cells. Immunogold EM demonstrated that HNE-modified proteins were mainly in the mitochondria and nuclei of the proximal tubular epithelium. The intensity of labeling at both the light and EM levels increased together with levels of biochemically measured lipid peroxidation products and protein carbonyl content. Our data suggest that the mechanism of acute nephrotoxicity of Fe-NTA involves mitochondrial and nuclear oxidative damage, findings that may help to define the mechanisms of iron-induced cell injury.  相似文献   

13.
Cyclosporine A (CsA) has been universally used as an immunosuppressant for the management of organ transplantation and various autoimmune diseases. However, nephrotoxicity due to CsA remains to be an important clinical challenge. In the present investigation, an attempt has been made to appraise the effect of sulphated polysaccharides on oxidative renal injury caused by CsA. Adult male Wistar rats were divided into four groups. Two groups received CsA by oral gavage (25 mg/kg body weight) for 21 days to provoke nephrotoxicity, one of which simultaneously received sulphated polysaccharides subcutaneously, (5 mg/kg body weight). A vehicle (olive oil) treated control group and sulphated polysaccharides drug control were also built-in. An increase in lipid peroxidation along with abnormal levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase) and non-enzymic antioxidants (glutathione, vitamin C and vitamin E) are the salient features observed in CsA induced nephrotoxicity. CsA induced impairment of renal toxicity was evident from the marked decline in the activities of renal marker enzymes like alkaline phosphatase, acid phosphatase and lactate dehydrogenase, as well as an apparent increase in the serum urea, uric acid and creatinine; diagnostic of renal damage was normalized by sulphated polysaccharides co-administration. Sulphated polysaccharides treatment showed an effectual role in counteracting the free radical toxicity by bringing about a significant decrease in peroxidative levels and increase in antioxidant status. These observations emphasize the antioxidant property of sulphated polysaccharides and its cytoprotective action against CsA induced nephrotoxicity.  相似文献   

14.
Cyclosporine A (CsA) is the immunosuppressor most frequently used in transplant surgery and in the treatment of autoimmune diseases, because of its specific inhibiting effect on the signal transduction pathways of cell T receptor. It has been shown that CsA is able to generate reactive oxygen species and lipid peroxidation, which are directly involved in the CsA nephrotoxicity, hepatotoxicity and cardiotoxicity. So, the use of antioxidants seems to be a useful tool in attempting to reduce CsA adverse effects. The aim of this review is to summarise the general aspect of CsA, the classification of antioxidants, their mechanism of action and their administration for improving CsA side effects. The protective role of different antioxidants has been evaluated on CsA-induced nephrotoxicity. It has been shown that the antioxidants, improved the morphological renal cytoarchitecture, increased the antioxidant enzyme content, decreased lipid peroxidation and reactive species oxygen (ROS). The protective role of antioxidants was also found in CsA hepatotoxicity and was related to the increase in antioxidant capacity of hepatic tissue, which was responsible for ameliorating hepatic morphology. Recently, it has been demonstrated that CsA induces side effects on the heart but the data to this purpose are very few and also the number of results on the protective role played by antioxidants it is very limited. In conclusion, not only do these observations provide insight into the intricate mechanism of CsA adverse effects, but they also present novel opportunities for the design and development of more effective therapeutic strategies against negative effects.  相似文献   

15.
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin.  相似文献   

16.
Summary The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, were monitored in isolated human renal adenocarcinoma tissues and in cultured human renal adenocarcinoma cells. The results were compared to the activities of these enzymes in the proposed cell of origin, isolated human proximal tubular tissues, and cultured proximal tubular epithelial cells. Strong modulation of these enzymes by culture conditions was observed in normal cells but not in carcinoma cells. Low levels of cellular lipid peroxidation, as assessed by levels of malondialdehyde (MDA), were observed in adenocarcinoma cells under the culture conditions tested with one exception: greatly elevated MDA was observed in renal adenocarcinoma cells growth on plastic in serum-free, chemically defined medium. This increased lipid peroxidation correlated with a loss of cell viability under these conditions. This work was supported by a grant from the Veterans Adminsitration (T. D. O.) and by grant 1 R01 CA 41267 from the National Institutes of Health (L. W. O.), Bethesda, MD.  相似文献   

17.
Cyclosporin A (CsA) is the prototype of immunosuppressant drugs that have revolutionized the management of all transplantation and autoimmune diseases. Side effects of CsA mainly affecting the kidney but also observed in liver and heart, limit the therapeutic use of this drug after organ transplantation. The renal toxicity of CsA is attributed to reduced renal blood flow which leads to hypoxia-reoxygenation injury accompanied by excessive generation of oxygen-derived free radicals. In several therapeutic protocols, CsA is used in association with corticosteroids to obtain better therapeutic results. Recently, our studies showed that hydrocortisone (HY) has a protective effect on CsA-induced cardiotoxicity. In fact our previous results demonstrated that in rat cardiomyocytes, CsA toxicity is due to a calcium overload, which in turn induce lipid peroxidation and determines oxidative stress-induced cell injury. Treatment with HY effectively inhibits CsA-induced toxicity, decreasing lipid peroxidation as well as calcium intracellular concentration. In this study we evaluated in vivo the effects of CsA, used alone or in association with HY, on some parameters of renal dysfunction (blood urea nitrogen; BUN, creatinine, and cholesterol), malondialdheyde (MDA) levels, antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and apoptosis. CsA administration for 24 days resulted in a marked renal oxidative stress, which significantly deranged the renal functions. Treatment with CsA in association with HY significantly improved the renal dysfunction and renal oxidative status. This study clearly suggests the role of oxidative stress in the pathogenesis of CsA-induced nephrotoxicity.  相似文献   

18.
Fosfomycin is clinically recognized to reduce the aminoglycoside antibiotics-induced nephrotoxicity. However, little has been clarified why fosfomycin protects the kidney from the aminoglycosides-induced nephrotoxicity. Gentamicin, a typical aminoglycoside, is reported to cause lipid peroxidation. We focused on lipid peroxidation induced by gentamicin as a mechanism for the aminoglycosides-induced nephrotoxicity. The aim of this study is to investigate the effect of fosfomycin on the gentamicin-induced lipid peroxidation. In rat renal cortex mitochondria, fosfomycin was shown to depress the gentamicin-induced lipid peroxidation, which was evaluated by formation of thiobarbituric acid reactive substances (TBARS). Interestingly, this effect was observed in rat renal cortex mitochondria, but not in rat liver microsomes. However, fosfomycin did not affect lipid peroxidation of arachidonic acid caused by gentamicin with iron. Fosfomycin inhibited the gentamicin-induced iron release from rat renal cortex mitochondria. These results indicated that fosfomycin inhibited the gentamicin-induced lipid peroxidation by depressing the iron release from mitochondria. This may possibly be one mechanism for the protection of fosfomycin against the gentamicin-induced nephrotoxicity.  相似文献   

19.
The aim of this study was to evaluate the adverse effects of cyclosporine A (CsA) toward renal morphogenesis and to test the renoprotective natural antioxidants such as provinol (PV). Pregnant rats were divided into four groups. Group I was injected SC with olive oil. Group II was treated with oral administration of PV and was used as control. Group III animals were injected SC daily with CsA, and group IV animals were injected daily with CsA and PV for 21 days of pregnancy. Five pups per litter were killed and the kidneys removed and treated by morphological and immunohistochemical (IHC) methods. IHC analysis considered two proteins responsible for nephrotoxicity in adult rats: inducible nitric oxide (iNOS) and matrix metalloproteinase-2 (MMP2). Pregnancy outcomes among CsA-treated rats demonstrated a reduced number of pups. Pups that were exposed antenatally to CsA presented several pathologic findings in all immature parenchyma and an increase in iNOS and MMP2 expression. These side effects were not observed in kidney of litters born from CsA + PV-treated mothers. Our study indicates that CsA induces morphological alterations in renal parenchyma of neonates and that PV plays a protective role against these side effects.  相似文献   

20.
The calcineurin-inhibitors (CNIs) cyclosporine (CsA) and tacrolimus (TAC) remain the pillars of modern immunosuppression regimens used in solid organ transplantation. Nephrotoxicity is an adverse effect that limits their successful use. The precise molecular mechanisms underlying this nephrotoxicity remain unclear. Using SILAC together with LC-MALDI-TOF/TOF, we investigated the CNIs-induced proteomic perturbations in renal cells. Among the 495 proteins quantifiable in both forward and reverse SILAC, 69 displayed CsA-induced perturbations: proteins involved in ER-stress/protein folding, apoptosis, metabolism/transport or cytoskeleton pathways were up-regulated, while cyclophilin B as well as nuclear and RNA-processing proteins were down-regulated. Co-administration of CsA with the antioxidant N-acetylcysteine significantly decreased lipid peroxidation and also partially corrected the CsA-induced unfolded protein response. TAC toxicity profile was apparently different from that of CsA, especially without perturbation of cyclophilins A and B, up-regulation of ER-chaperones nor down-regulation of a number of nuclear proteins. These results provide a new insight and are consistent with recent data regarding the molecular mechanisms of CNIs-induced nephrotoxicity. Our findings offer new directions for future research aiming to identify specific biomarkers of CsA nephrotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号