首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salcedo SP  Holden DW 《The EMBO journal》2003,22(19):5003-5014
Intracellular replication of the bacterial pathogen Salmonella enterica occurs in membrane-bound compartments called Salmonella-containing vacuoles (SCVs). Maturation of the SCV has been shown to occur by selective interactions with the endocytic pathway. We show here that after invasion of epithelial cells and migration to a perinuclear location, the majority of SCVs become surrounded by membranes of the Golgi network. This process is dependent on the Salmonella pathogenicity island 2 type III secretion system effector SseG. In infected cells, SseG was associated with the SCV and peripheral punctate structures. Only bacterial cells closely associated with the Golgi network were able to multiply; furthermore, mutation of sseG or disruption of the Golgi network inhibited intracellular bacterial growth. When expressed in epithelial cells, SseG co-localized extensively with markers of the trans-Golgi network. We identify a Golgi-targeting domain within SseG, and other regions of the protein that are required for localization of bacteria to the Golgi network. Therefore, replication of Salmonella in epithelial cells is dependent on simultaneous and selective interactions with both endocytic and secretory pathways.  相似文献   

2.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

3.
Intracellular replication of Salmonella enterica requires the formation of a unique organelle termed Salmonella-containing vacuole (SCV). The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) has a crucial role in the formation and maintenance of the SCV. The SPI2-T3SS translocates a large number of effector proteins that interfere with host cell functions such as microtubule-dependent transport. We investigated the function of the effector SseF and observed that this protein is required to maintain the SCV in a juxtanuclear position in infected epithelial cells. The formation of juxtanuclear clusters of replicating Salmonella required the recruitment of dynein to the SCV but SseF-deficient strains were highly reduced in dynein recruitment to the SCV. We performed a functional dissection of SseF and defined domains that were important for translocation and the specific effector functions of this protein. Of particular importance was a hydrophobic domain in the C-terminal half that contains three putative transmembrane (TM) helices. Deletion of one of these TM helices ablated the effector functions of SseF. We observed that this domain was essential for the proper intracellular positioning of the SCV to a juxtanuclear, Golgi-associated localization. These data show that SseF, in concert with the effector proteins SifA and SseG mediate the precise positioning of the SCV by differentially modulating the recruitment of microtubule motor proteins to the SCV.  相似文献   

4.
The intracellular pathogen Salmonella replicates in infected host cells within a specialized vacuole referred to as the Salmonella-containing vacuole (SCV). Effector molecules encoded by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS) are essential for Salmonella to survive in the intracellular environment. It was previously shown that SPI-2 allows Salmonella to inhibit the recruitment of NADPH phagocyte oxidase-containing vesicles to SCVs. New research has now revealed that SPI-2 effectors also interfere with the colocalization of inducible nitric oxide synthase (iNOS) to SCVs, thus protecting the pathogen from the antimicrobial actions of reactive nitrogen species.  相似文献   

5.
Salmonella enterica serovar Typhimurium (S. typhimurium) is a gram-negative facultative intracellular pathogen that can infect a broad range of mammalian hosts. Following invasion of host cells, the majority of S. typhimurium are known to reside in a membrane-bound compartment known as the Salmonella-containing vacuole (SCV). S. typhimurium actively remodels this compartment using bacterial virulence proteins, called effectors, to establish a protected niche where it can replicate. S. typhimurium delivers more than 30 effectors into the host cell cytosol by bacterial type three secretion systems, encoded by Salmonella pathogenicity island 1 or 2 (SPI-1 or SPI-2). Recent studies have revealed a critical role for the SPI-1 effector SopB in 'directing traffic' at early stages of infection, allowing the bacteria to control SCV maturation by modulating its interaction with the endocytic system. At later stages of infection, the SCV establishes a 'nest' near the Golgi where optimal bacterial growth takes place. In this study, we highlight these recent developments in our understanding of SCV trafficking.  相似文献   

6.
Type III secretion systems (TTSS) are used by Gram-negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonella pathogenicity islands (SPI-1 and SPI-2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI-1 is required for bacterial invasion of epithelial cells and SPI-2 for survival/replication in phagocytic cells. However, because SPI-1 TTSS mutants are invasion-incompetent, the role of this TTSS in post-invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non-invasive SPI-1 TTSS mutant (invA) into cultured epithelial cells: (i) co-internalization with wild-type S. Typhimurium (SPI-1-dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI-1-independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI-1 effectors are essential for this process and cannot be complemented by wild-type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella-containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild-type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI-1 in vacuole biogenesis and intracellular survival in non-phagocytic cells.  相似文献   

7.
Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.  相似文献   

8.
After invasion of epithelial cells, Salmonella enterica Typhimurium resides within membrane-bound vacuoles where it survives and replicates. Like endocytic vesicles, the Salmonella-containing vacuoles (SCVs) undergo a maturation process that involves sequential acquisition of Rab5 and Rab7 and displacement toward the microtubule-organizing center. However, SCVs fail to merge with lysosomes and instead develop subsequently into a filamentous network that extends toward the cell periphery. We found that the initial centripetal displacement of the SCV is due to recruitment by Rab7 of Rab7-interacting lysosomal protein (RILP), an effector protein that can simultaneously associate with the dynein motor complex. Unlike the early SCVs, the Salmonella-induced filaments (Sifs) formed later are devoid of RILP and dynein, despite the presence of active Rab7 on their membranes. Kinesin seems to be involved in the elongation of Sifs. SifA, a secreted effector of Salmonella, was found to be at least partly responsible for uncoupling Rab7 from RILP in Sifs and in vitro experiments suggest that SifA may exert this effect by interacting with Rab7. We propose that, by disengaging RILP from Rab7, SifA enables the centrifugal extension of tubules from the Salmonella-containing vacuoles, thereby providing additional protected space for bacterial replication.  相似文献   

9.
The Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS) of Salmonella typhimurium is required for bacterial replication within host cells. It acts by translocating effector proteins across the membrane of the Salmonella-containing vacuole (SCV). The SifA effector is required to maintain the integrity of the SCV membrane, and for the formation in epithelial cells of Salmonella-induced filaments (Sifs), which are tubular extensions of SCVs. We have investigated the role in S. typhimurium virulence of the putative SPI-2 effector genes sifB, srfJ, sseJ and sseI. An S. typhimurium strain carrying a mutation in sseJ was mildly attenuated for systemic virulence in mice, but strains carrying mutations in either srfJ, sseI or sifB had very little or no detectable virulence defect after intraperitoneal inoculation. Expression of SseJ in HeLa cells resulted in the formation of globular membranous compartments (GMCs), the composition of which appears to be similar to that of SCV membranes and Sifs. The formation of GMCs was dependent on the serine residue of the predicted acyltransferase/lipase active site of SseJ. Transiently expressed SseJ also inhibited Sif formation by wild-type bacteria, and was found to associate with Sifs, SCV membranes and simultaneously expressed SifA. Intracellular vacuoles containing sseJ mutant bacteria appeared normal but, in contrast to a sifA mutant, a sifA sseJ double mutant strain did not lose its vacuolar membrane, indicating that loss of vacuolar membrane around sifA mutant bacteria requires the action of SseJ. Collectively, these results suggest that the combined action of SseJ and SifA regulate dynamics of the SCV membrane in infected cells.  相似文献   

10.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.  相似文献   

11.
Following invasion of non-phagocytic host cells, Salmonella enterica survives and replicates within a phagosome-like compartment known as the Salmonella-containing vacuole (SCV). It is now well established that SCV biogenesis, like phagosome biogenesis, involves sequential interactions with the endocytic pathway. However, Salmonella is believed to limit these interactions and, in particular, to avoid fusion of terminal lysosomes with the SCV. In this study, we reassessed this process using a high-resolution live-cell imaging approach and found an unanticipated level of interaction between the SCV and the endocytic pathway. Direct interactions, in which late endosomal/lysosomal content was transferred to SCVs, were detected within 30 min of invasion and continued for several hours. Mechanistically, these interactions were very similar to phagosome-lysosome fusion because they were accompanied by rapid acidification of the SCV, could be blocked by chemical perturbation of microtubules or vacuolar acidification and involved the smallGTPase Rab7. In comparison with vacuoles containing internalized Escherichia coli or heat-killed Salmonella, SCVs did show some delay of fusion and acidification, although, this appeared to be independent of either type III secretion system. These results provide compelling evidence that inhibition of SCV-lysosome fusion is not the major determinant in establishment of the Salmonella replicative niche in epithelial cells.  相似文献   

12.
Salmonella enterica has two pathogenicity islands encoding separate type three secretion systems (T3SS). Proteins secreted through these systems facilitate invasion and survival. After entry, Salmonella reside within a membrane bound vacuole, the Salmonella containing vacuole (SCV), where translocation of a second set of effectors by the Salmonella pathogenicity island 2 (SPI-2) T3SS is initiated. SPI-2 secretion in vitro can be induced by conditions that mimic the Salmonella containing vacuole. Utilising high-throughput mass spectrometry, we mapped the surface-attached proteome of S. Typhimurium SL1344 grown in vitro under SPI-2-inducing conditions and identified 108 proteins; using secretion signal prediction software, 43% of proteins identified contained a signal sequence. Of these proteins, 13 were known secreted effector proteins including SPI-2 effector proteins SseB, SseC, SseD, SseL, PipB2 and SteC, although surprisingly five were SPI-1 proteins, SipA, SipB, SipC, SipD and SopD, while 2 proteins SteA and SlrP are secreted by both T3SSs. This is the first in vitro study to demonstrate dual secretion of SPI-1 and SPI-2 proteins by S. Typhimurium and demonstrates the potential of high-throughput LC-ESI/MS/MS sequencing for the identification of novel proteins, providing a platform for subsequent comparative proteomic analysis, which should greatly assist understanding of the pathogenesis and inherent variation between serovars of Salmonella and ultimately help towards development of novel control strategies.  相似文献   

13.
The perinuclear stacks of the Golgi apparatus maintained by dynamic microtubules are essential for cell migration. Activation of Akt (protein kinase B, PKB) negatively regulates glycogen synthase kinase 3β (GSK3β)-mediated tau phosphorylation, which enhances tau binding to microtubules and microtubule stability. In this study, experiments were performed on developmentally regulated GTP-binding protein 2 (DRG2)-stably knockdown HeLa cells to determine whether knockdown of DRG2 in HeLa cells treated with epidermal growth factor (EGF) affects microtubule dynamics, perinuclear Golgi stacking, and cell migration. Here, we show that DRG2 plays a key role in regulating microtubule stability, perinuclear Golgi stack formation, and cell migration. DRG2 knockdown prolonged the EGF receptor (EGFR) localization in endosome, enhanced Akt activity and inhibitory phosphorylation of GSK3β. Tau, a target of GSK3β, was hypo-phosphorylated in DRG2-knockdown cells and showed greater association with microtubules, resulting in microtubule stabilization. DRG2-knockdown cells showed defects in microtubule growth and microtubule organizing centers (MTOC), Golgi fragmentation, and loss of directional cell migration. These results reveal a previously unappreciated role for DRG2 in the regulation of perinuclear Golgi stacking and cell migration via its effects on GSK3β phosphorylation, and microtubule stability.  相似文献   

14.
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium establishes a replicative niche, the Salmonella-containing vacuole (SCV), in host cells. Here we demonstrate that these bacteria exploit the function of Arl8B, an Arf family GTPase, during infection. Following infection, Arl8B localized to SCVs and to tubulated endosomes that extended along microtubules in the host cell cytoplasm. Arl8B(+) tubules partially colocalized with LAMP1 and SCAMP3. Formation of LAMP1(+) tubules (the Salmonella-induced filaments phenotype; SIFs) required Arl8B expression. SIFs formation is known to require the activity of kinesin-1. Here we find that Arl8B is required for kinesin-1 recruitment to SCVs. We have previously shown that SCVs undergo centrifugal movement to the cell periphery at 24 h post infection and undergo cell-to-cell transfer to infect neighbouring cells, and that both phenotypes require kinesin-1 activity. Here we demonstrate that Arl8B is required for migration of the SCV to the cell periphery 24 h after infection and for cell-to-cell transfer of bacteria to neighbouring cells. These results reveal a novel host factor co-opted by S. Typhimurium to manipulate the host endocytic pathway and to promote the spread of infection within a host.  相似文献   

15.
Salmonella colonizes a vacuolar niche in host cells during infection. Maturation of the Salmonella-containing vacuole (SCV) involves the formation of phosphatidylinositol 3-phosphate (PI(3)P) on its outer leaflet. SopB, a bacterial virulence factor with phosphoinositide phosphatase activity, was proposed to generate PI(3)P by dephosphorylating PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3. Here, we examine the mechanism of PI(3)P formation during Salmonella infection. SopB is required to form PI(3,4)P2/PI(3,4,5)P3 at invasion ruffles and PI(3)P on nascent SCVs. However, we uncouple these events experimentally and reveal that SopB does not dephosphorylate PI(3,4)P2/PI(3,4,5)P3 to produce PI(3)P. Instead, the phosphatase activity of SopB is required for Rab5 recruitment to the SCV. Vps34, a PI3-kinase that associates with active Rab5, is responsible for PI(3)P formation on SCVs. Therefore, SopB mediates PI(3)P production on the SCV indirectly through recruitment of Rab5 and its effector Vps34. These findings reveal a link between phosphoinositide phosphatase activity and the recruitment of Rab5 to phagosomes.  相似文献   

16.
Assembly of an integral Golgi complex is driven by microtubule (MT)-dependent transport. Conversely, the Golgi itself functions as an unconventional MT-organizing center (MTOC). This raises the question of whether Golgi assembly requires centrosomal MTs or can be self-organized, relying on its own MTOC activity. The computational model presented here predicts that each MT population is capable of gathering Golgi stacks but not of establishing Golgi complex integrity or polarity. In contrast, the concerted effort of two MT populations would assemble an integral, polarized Golgi complex. Indeed, while laser ablation of the centrosome did not alter already-formed Golgi complexes, acentrosomal cells fail to reassemble an integral complex upon nocodazole washout. Moreover, polarity of post-Golgi trafficking was compromised under these conditions, leading to strong deficiency in polarized cell migration. Our data indicate that centrosomal MTs complement Golgi self-organization for proper Golgi assembly and motile-cell polarization.  相似文献   

17.
Salmonella enterica serovar Typhimurium is an intracellular pathogen that grows within a modified endomembrane compartment, the Salmonella‐containing vacuole (SCV). Maturation of nascent SCVs involves the recruitment of early endosome markers and the remodelling of phosphoinositides at the membrane of the vacuole, in particular the production of phosphatidylinositol 3‐phosphate [PI(3)P]. Sorting nexins (SNXs) are a family of proteins characterized by the presence of a phox homology (PX) domain that binds to phosphoinositides and are involved in intracellular trafficking in eukaryotic cells. We therefore studied whether sorting nexins, particularly sorting nexin 3 (SNX3), play a role in Salmonella infection. We found that SNX3 transiently localized to SCVs at early times post invasion (10 min) and presented a striking tubulation phenotype in the vicinity of SCVs at later times (30–60 min). The bacterial effector SopB, which is known to promote PI(3)P production on SCVs, was required for the formation of SNX3 tubules. In addition, RAB5 was also required for the formation of SNX3 tubules. Depletion of SNX3 by siRNA impaired RAB7 and LAMP1 recruitment to the SCV. Moreover, the formation of Salmonella‐induced filaments (Sifs) was altered by SNX3 knock‐down. Therefore, SNX3 plays a significant role in regulating the maturation of SCVs.  相似文献   

18.
In vitro myogenesis involves a dramatic reorganization of the microtubular network, characterized principally by the relocalization of microtubule nucleating sites at the surface of the nuclei in myotubes, in marked contrast with the classical pericentriolar localization observed in myoblasts (Tassin, A. M., B. Maro, and M. Bornens, 1985, J. Cell Biol., 100:35-46). Since a spatial relationship between the Golgi apparatus and the centrosome is observed in most animal cells, we have decided to follow the fate of the Golgi apparatus during myogenesis by an immunocytochemical approach, using wheat germ agglutinin and an affinity-purified anti-galactosyltransferase. We show that Golgi apparatus in myotubes displays a perinuclear distribution which is strikingly different from the polarized juxtanuclear organization observed in myoblasts. As a result, the Golgi apparatus in myotubes is situated close to the microtubule organizing center (MTOC), the cis-side being situated at a fixed distance from the nuclear envelope, a situation which suggests the existence of a structural association between the Golgi apparatus and the nuclear periphery. This is supported by experiments of microtubule depolymerization by nocodazole, in which a minimal effect was observed on Golgi apparatus localization in myotubes in contrast with the dramatic scattering observed in myoblasts. In both cell types, electron microscopy reveals that microtubule disruption generates individual dictyosomes; this suggests that the connecting structures between dictyosomes are principally affected. This structural dependency of the Golgi apparatus upon microtubules is not apparently accompanied by a reverse dependency of MTOC structure or function upon Golgi apparatus activity. Golgi apparatus modification by monensin, as effective in myotubes as in myoblasts, is without apparent effect on MTOC localization or activity and on microtubule stability. The main result of our study is to show that in a cell type where the MTOC is dissociated from centrioles and where antero-posterior polarity has disappeared, the association between the Golgi apparatus and the MTOC is maintained. The significance of such a tight association is discussed.  相似文献   

19.
Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.  相似文献   

20.
Salmonella invades epithelial cells and survives within a membrane‐bound compartment, the Salmonella‐containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time‐points. Vacuole interactions with endoplasmic reticulum‐derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper‐replication within the host cytosol. On the other hand, SCV interactions with VAMP7‐positive lysosome‐like vesicles promote Salmonella‐induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号