首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Andre Vermeglio 《BBA》1977,459(3):516-524
Electron transfer between purified reaction centers from Rhodopseudomonas sphaeroides and exogenous ubiquinone has been studied in the presence of electron donors by measurements of light-induced absorbance changes following a sequence of short actinic light flashes. Each odd flash promotes the formation of a molecule of ubisemiquinone; after each even flash the semiquinone disappears and a molecule of the fully reduced quinone appears.We interpret these results by means of a model where a specialized molecule of ubiquinone is reduced by the primary electron acceptor in a one-electron transfer reaction after each flash, and is reoxidized by a molecule of the ubiquinone pool in a two-electron transfer reaction every two flashes.  相似文献   

2.
(1) A flash number dependency of flash-induced absorbance changes was observed with whole cells of Rhodospirillum rubrum and chromatophores of R. rubrum and Rhodopseudomonas sphaeroides wild type and the G1C mutant. The oscillatory behavior was dependent on the redox potential; it was observed under oxidizing conditions only. Absorbance difference spectra measured after each flash in the 275--500 nm wavelength region showed that a molecule of ubiquinone, R, is reduced to the semiquinone (R-) after odd-numbered flashes and reoxidized after even-numbered flashes. The amount of R reduced was approximately one molecule per reaction center. (2) The flash number dependency of the electrochromic shift of the carotenoid spectrum was studied with chromatophores of Rps. sphaeroides wild type and the G1C mutant. At higher values of the ambient redox potential a relatively slow phase with a rise time of 30 ms was observed after even-numbered flashes, in addition to the fast phase (completed within 0.2 ms) occurring after each flash. Evidence was obtained that the slow phase represents the formation of an additional membrane potential during a dark reaction that occurs after flashes with an even number. This reaction is inhibited by antimycin A, whereas the oscillations of the R/R- absorbance changes remain unaffected. At low potentials (E = 100 mV) no oscillations of the carotenoid shift were observed: a fast phase was followed by a slow phase (antimycin-sensitive) with a half-time of 3 ms after each flash. (3) The results are discussed in terms of a model for the cyclic electron flow as described by Prince and Dutton (Prince, R.C. and Dutton, P.L. (1976) Bacterial Photosynthesis Conference, Brussels, Belgium, September 6--9, Abstr. TB4) employing the so-called Q-cycle.  相似文献   

3.
The photoreduction of ubiquinone in the electron acceptor complex (QIQII) of photosynthetic reaction centers from Rhodopseudomonas sphaeroides, R26, was studied in a series of short, saturating flashes. The specific involvement of H+ in the reduction was revealed by the pH dependence of the electron transfer events and by net H+ binding during the formation of ubiquinol, which requires two turnovers of the photochemical act. On the first flash QII receives an electron via QI to form a stable ubisemiquinone anion (QII-); the second flash generates QI-. At low pH the two semiquinones rapidly disproportionate with the uptake of 2 H+, to produce QIIH2. This yields out-of-phase binary oscillations for the formation of anionic semiquinone and for H+ uptake. Above pH 6 there is a progressive increase in H+ binding on the first flash and an equivalent decrease in binding on the second flash until, at about pH 9.5, the extent of H+ binding is the same on all flashes. The semiquinone oscillations, however, are undiminished up to pH 9. It is suggested that a non-chromophoric, acid-base group undergoes a pK shift in response to the appearance of the anionic semiquinone and that this group is the site of protonation on the first flash. The acid-base group, which may be in the reaction center protein, appears to be subsequently involved in the protonation events leading to fully reduced ubiquinol. The other proton in the two electron reduction of ubiquinone is always taken up on the second flash and is bound directly to QII-. At pH values above 8.0, it is rate limiting for the disproportionation and the kinetics, which are diffusion controlled, are properly responsive to the prevailing pH. Below pH 8, however, a further step in the reaction mechanism was shown to be rate limiting for both H+ binding electron transfer following the second flash.  相似文献   

4.
5.
C.A. Wraight 《BBA》1979,548(2):309-327
The photoreduction of ubiquinone in the electron acceptor complex (Q1Q11) of photosynthetic reaction centers from Rhodopseudomonas sphaeroides, R26, was studied in a series of short, saturating flashes. The specific involvement of H+ in the reduction was revealed by the pH dependence of the electron transfer events and by net H+ binding during the formation of ubiquinol, which requires two turnovers of the photochemical act. On the first flash Q11 receives an electron via Q1 to form a stable ubisemiquinone anion (Q??11); the second flash generates Q??1. At low pH the two semiquinones rapidly disproportionate with the uptake of 2 H+, to produce Q11H2. This yields out-of-phase binary oscillations for the formation of anionic semiquinone and for H+ uptake. Above pH 6 there is a progressive increase in H+ binding on the first flash and an equivalent decrease in binding on the second flash until, at about pH 9.5, the extent of H+ binding is the same on all flashes. The semiquinone oscillations, however, are undiminished up to pH 9. It is suggested that a non-chromophoric, acid-base group undergoes a pK shift in response to the appearance of the anionic semiquinone and that this group is the site of protonation on the first flash. The acid-base group, which may be in the reaction center protein, appears to be subsequently involved in the protonation events leading to fully reduced ubiquinol. The other proton in the two electron reduction of ubiquinone is always taken up on the second flash and is bound directly to Q??11. At pH values above 8.0, it is rate limiting for the disproportionation and the kinetics, which are diffusion controlled, are properly responsive to the prevailing pH. Below pH 8, however, a further step in the reaction mechanism was shown to be rate limiting for both H+ binding electron transfer following the second flash.  相似文献   

6.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of antimycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll. 2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift. 3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reductions 3- to 4-fold under certain if not all conditions. 4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase. 5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer. 6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

7.
A mathematical model, describing the binary oscillation of the concentration of semiquinone form of the secondary acceptor (ubiquinone) in photosynthetic reaction center of purple bacteria is proposed. This model takes into account both the changes of the ubiquinone state when the chromatophores are subjected to short flashes of light, and the successive dark relaxation of the semiquinone form. The model allows to calculate such characteristics as the dependence of the flash number, the stationary level of semiquinone form which is being established, when the flash number increases, the velocity which the concentration of semiquinone form is aspirating towards this stationary level and other characteristics. The model shows that the quantum yield of primary charge separation on the reaction center is higher after odd-number flashes then after even-number flashes.  相似文献   

8.
Pierre Joliot  Anne Joliot 《BBA》1984,765(2):210-218
The redox changes of cytochrome b-563 (cytochrome b), cytochrome f, plastocyanin and P-700 were measured on dark-adapted chloroplasts after illumination by a series of flashes in oxidizing conditions (0.1 mM ferricyanide). In these conditions, the plastoquinone pool is fully oxidized and the only available plastoquinol are those formed by Photosystem (PS) II reaction. According to the two-electron gate mechanism proposed by Bouges-Bocquet (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250–256), plastoquinol is mainly formed after the second and the fourth flashes. After the second flash, the reoxidation of plastoquinol occurs by a concerted reaction which reduces most of the cytochrome b present and a fraction of PS I donors. Most of these electrons are stored on P-700, which implies a large equilibrium constant between the secondary PS I donors and P-700. One electron is stored on cytochrome b during a time (t12 ≈ 1 s) much longer than the dark interval between flashes. After the fourth flash, a new plastoquinol molecule is formed, which induces the reduction of PS I donors with no corresponding further reduction of cytochrome b. The number of electrons transferred after the fourth flash is larger than that transferred after the second flash although the rate of transfer is lower. To interpret these data, we assume that the plastoquinol formed after the fourth flash is reoxidized by a second concerted reaction: one electron is directly transferred to PS I donors while the other cooperates with the electron stored on cytochrome b to reduce a plastoquinone molecule localized on a site close to the outer face of the membrane. This newly formed plastoquinol crosses the membrane and transfers a second electron to PS I donors. This interpretation resembles a model proposed by Velthuys (Velthuys, B.R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2765?2769) and which belongs to the modified Q-cycle class of models.  相似文献   

9.
Reaction centers from Rhodopseudomonas sphaeroides strain R-26 were prepared with varying Fe and ubiquinone (Q) contents. The photooxidation of P-870 to P-870+ was found to occur with the same quantum yield in Fe-depleted reaction centers as in control samples. The kinetics of electron transfer from the initial electron acceptor (I) to Q also were unchanged upon Fe removal. We conclude that Fe has no measurable role in the primary photochemical reaction. The extent of secondary reaction from the first quinone acceptor (QA) to the second quinone acceptor (QB) was monitored by the decay kinetics of P-870+ after excitation of reaction centers with single flashes in the absence of electron donors, and by the amount of P-870 photooxidation that occurred on the second flash in the presence of electron donors. In reaction centers with nearly one iron and between 1 and 2 ubiquinones per reaction center, the amount of secondary electron transfer is proportional to the ubiquinone content above one per reaction center. In reaction centers treated with LiClO4 and o-phenanthroline to remove Fe, the amount of secondary reaction is decreased and is proportional to Fe content. Fe seems to be required for the secondary reaction. In reaction centers depleted of Fe by treatment with SDS and EDTA, the correlation between Fe content and secondary activity is not as good as that found using LiClO4. This is probably due in part to a loss of primary photochemical activity in samples treated with SDS; but the correlation is still not perfect after correction for this effect. The nature of the back reaction between P-870+ and Q-B was investigated using stopped flow techniques. Reaction centers in the P-870+ Q-B state decay with a 1-s half-time in both the presence and absence of o-phenanthroline, an inhibitor of electron transfer between Q-B and QB. This indicates that the back reaction between P-870+ and Q-A is direct, rather than proceeding via thermal repopulation of Q-A. The P-870+ Q-B state is calculated to lie at least 100 mV in free energy below the P-870+ Q-A state.  相似文献   

10.
Chromatophores of Rhodopseudomonas sphaeroides strain R-26 were subjected to a series of brief flashes of light in the presence of diaminodurene as an electron donor. Odd-numbered flashes induced the reduction of ubiquinone to the anionic semiquinone, as indicated by absorbance changes near 450 nm. This reaction was not attended by proton binding. Even-numbered flashes caused disappearance of the semiquinone, presumably by conversion to the fully reduced form. This reaction was attended by proton uptake.  相似文献   

11.
Chromatophores of Rhodopseudomonas sphaeroides strain R-26 were subjected to a series of brief flashes of light in the presence of diaminodurene as an electron donor. Odd-numbered flashes induced the reduction of ubiquinone to the anionic semiquinone, as indicated by absorbance changes near 450 nm. This reaction was not attended by proton binding. Even-numbered flashes caused disappearance of the semiquinone, presumably by conversion to the fully reduced form. This reaction was attended by proton uptake.  相似文献   

12.
Extracting Chromatium vinosum chromatophores with light petroleum destroys their ability to perform photochemistry on the second of two closely-spaced actinic flashes, without affecting photochemistry on the first flash. Extraction also increases the likelihood of a back-reaction in which an electron returns from the primary electron acceptor directly to P870. These effects probably reflect the removal of a secondary electron acceptor. Extraction does not appear to interfere with the primary photochemical reaction. Reconstituting the extracted chromatophores with the lipid extract or with pure ubiquinone (Q) completely reverses the effects of the extraction. Chromatography of the lipid extract shows that Q is the only active material that it contains in detectable quantity. These observations support the conclusion that Q is the secondary electron acceptor.

Piericidin A, certain alkyl-substituted quinolinequinones, and a substituted 4,7-dioxobenzothiazole inhibit electron transfer between the primary and secondary acceptors. The sensitivity to these inhibitors, and the participation of Q and non-heme iron suggest that the secondary electron-transfer reaction resembles the reactions catalyzed by respiratory dehydrogenases.

The proton uptake that follows flash excitation does not seem to be tightly linked to the reduction of the secondary electron acceptor. It still occurs (though with decreased amplitude) in extracted chromatophores, and even in the presence of inhibitors of the secondary electron-transfer reaction.  相似文献   


13.
The kinetics of the fluorescence yield phi of chlorophyll a in Chlorella pyrenoidosa were studied under anaerobic conditions in the time range from 50 mus to several minutes after short (t 1/2 = 30 ns or 5 mus) saturating flashes. The fluorescence yield "in the dark" increased from phi = 1 at the beginning to phi approximately 5 in about 3 h when single flashes separated by dark intervals of about 3 min were given. After one saturating flash, phi increased to a maximum value (4-5) at 50 mus, then phi decreased to about 3 with a half time of about 10 ms and to the initial value with a half time of about 2 s. When two flashes separated by 0.2 s were given, the first phase of the decrease after the second flash occurred within 2 ms. After one flash given at high initial fluorescence yield, the 10-ms decay was followed by a 10 s increase to the initial value. After the two flashes 0.2 s apart, the rapid decay was not followed by a slow increase. These and other experiments provided additional evidence for and extend an earlier hypothesis concerning the acceptor complex of Photosystem II (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250-256; Velthuys, B. R. and Amesz. J. (1974) Biochim. Biophys. Acta 333, 85-94): reaction center 2 contains an acceptor complex QR consisting of an electron-transferring primary acceptor molecule Q, and a secondary electron acceptor R, which can accept two electrons in succession, but transfers two electrons simultaneously to a molecule of the tertiary acceptor pool, containing plastoquinone (A). Furthermore, the kinetics indicate that 2 reactions centers of System I, excited by a short flash, cooperate directly or indirectly in oxidizing a plastohydroquinone molecule (A2-). If initially all components between photoreaction 1 and 2 are in the reduced state the following sequence of reactions occurs after a flash has oxidised A2- via System I: Q-R2- + A leads to Q-R + A2- leads to QR- + A2-. During anaerobiosis two slow reactions manifest themselves: the reduction of R (and A) within 1 s, presumably by an endogenous electron donor D1, and the reduction of Q in about 10 s when R is in the state R- and A in the state A2-. An endogenous electron donor, D2, and Q- complete in reducing the photooxidized donor complex of System II in reactions with half times of the order of 1 s.  相似文献   

14.
Absorbance changes at 450 nm of the semiquinone form of the secondary electron acceptor were studied in chromatophores of Rhodospirillum rubrum. When chromatophores are illuminated by a series of single turnover flashes ubisemiquinone is formed and destroyed on alternate flashes at ambient redox potential from 100 to 250 mV. A simple kinetic model of the binary oscillations is suggested. On the base of the model it is shown that the rate constant of electron transfer from primary to secondary quinone after the first flash is larger that after the second flash. Cooperativity in electron transfer from primary to secondary quinone can be explained by electrostatic interactions of charged carriers.  相似文献   

15.
Light-induced electric current and potential responses have been measured across planar phospholipid membranes containing reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Under conditions in which the reaction centers are restricted to a single electron turnover, the responses can be correlated with the light-induced electron transfer reactions associated with the reaction center. The results indicate that electron transfer from the bacteriochlorophyll dimer to the primary ubiquinone molecule, and from ferrocytochrome c to the oxidized dimer occur in series across the planar membrane. Electron transfer from the primary to secondary ubiquinone molecule is not electrogenic.  相似文献   

16.
N Kusumoto  P Sétif  K Brettel  D Seo  H Sakurai 《Biochemistry》1999,38(37):12124-12137
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.  相似文献   

17.
A stepwise increasing membrane potential was generated in chromatophores of the phototrophic bacterium Rhodobacter capsulatus by illumination with short flashes of light. Proton transfer through ATP-synthase (measured by electrochromic carotenoid bandshift and by pH-indicators) and ATP release (measured by luminescence of luciferin-luciferase) were monitored. The ratio between the amount of protons translocated by F0F1 and the ATP yield decreased with the flash number from an apparent value of 13 after the first flash to about 5 when averaged over three flashes. In the absence of ADP, protons slipped through F0F1. The proton transfer through F0F1 after the first flash contained two kinetic components, of about 6 ms and 20 ms both under the ATP synthesis conditions and under slip. The slower component of proton transfer was substantially suppressed in the absence of ADP. We attribute our observations to the mechanism of energy storage in the ATP-synthase needed to couple the transfer of four protons with the synthesis of one molecule of ATP. Most probably, the transfer of initial protons of each tetrad creates a strain in the enzyme that slows the translocation of the following protons.  相似文献   

18.
Absorbance changes are reported associated with Photosystem II and showing a periodicity of two and four as a function of flash number.

The absorbance changes showing a periodicity of two were found to occur in the presence of artificial electron donors as well and are presumably caused by the secondary electron acceptor R of Photosystem II. The absorbance difference spectra suggest that R is a plastoquinone molecule, which is reduced to its semiquinone anion after an uneven number of flashes. After an even number of flashes, the semiquinone is reoxidized. The absorbance changes showing a periodicity of four are tentatively ascribed to the charge accumulating donor complex of Photosystem II.  相似文献   


19.
When reaction centers are illuminated by a series of single turnover flashes ubisemiquinone is formed and destroyed on alternate flashes. This oscillatory behaviour can be observed with both optical and electron spin resonance techniques. The oscillations are dependent upon the presence of excess ubiquinone in a manner which suggests that two molecules may act almost equivalently as metastable primary acceptors forming a two-electron gate between the one-electron primary photoact and a two-electron secondary acceptor pool.  相似文献   

20.
On dark-adapted Chlorella, after one flash, plastocyanin (PC) undergoes reduction with a half-time of 7 ms. After 4 or 5 flashes, the reduction of PC+ in the 10 ms range is suppressed, and the level of oxidized plastocyanin increases during the next few flashes before reaching a stationary value. Cytochrome f exhibits approximately the same pattern. The reduction of PC+ and cytochrome f+ in the 10 ms range is correlated with an increase of the electrice field named phase b (Joliot, P. and Delosme, R., Biochim. Biophys. Acta 357 (1974) 267-284). Both need the presence of a compound R' in the reduced state. A dark electron transfer involving a carrier of electrons across the membrane, a proton carrier, R' as terminal reducant, PC+ and cytochrome f+ as terminal oxidants, would account for this field generation. Cooperation between the electron transfer chains is implied at the level of plastocyanin oxidation. An equilibrium constant of about 2 is observed between cytochrome f and plastocyanin before 1 ms and after 500 ms after the photochemical reactions. We observe that cytochrome f and plastocyanin are not connected from 1 to 100 ms after a photochemical reaction. The equilibrium constant between plastocyanin and P-700 remains large [20] under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号