首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the development of a single-primer amplification system, which uses the trypanosomal mobile genetic element RIME as a molecular marker for the differentiation of Trypanosoma brucei stocks. Using a well-characterised set of T. brucei stocks from southeast Uganda, Kenya and Zambia, we have evaluated the application of this technique, termed MGE-PCR (mobile genetic element PCR) for the typing of trypanosome strains. The technique revealed considerable variation between stocks and was sufficiently specific to amplify trypanosomal DNA in the presence of host DNA. The results showed a clear distinction between human-infective and non-human-infective stocks. Comparative studies on these stocks using markers for the human serum resistance associated (SRA) gene, which identifies human-infective stocks, demonstrated complete agreement between MGE-PCR derived groups and human-infectivity status. Furthermore, MGE-PCR detects high levels of variability within the T. b. brucei and T. b. rhodesiense groups and is therefore a powerful discriminatory tool for tracking individual T. brucei genotypes and strains.  相似文献   

2.
To better understand the epidemiology of sleeping sickness in the Central African sub-region, notably the heterogeneity of Human African Trypanosomiasis (HAT) foci, the mobile genetic element PCR (MGE-PCR) technique was used to genotype Trypanosoma brucei s.l. (T. brucei s.l.) isolates from this sub-region. Using a single primer REV B, which detects positional variation of the mobile genetic element RIME, via amplification of flanking regions, MGE-PCR revealed a micro genetic variability between Trypanosoma brucei gambiense (T. b. gambiense) isolates from Central Africa. The technique also revealed the presence of several T. b. gambiense genotypes and allowed the identification of minor and major ubiquitous genotypes in HAT foci. The presence of several T. b. gambiense genotypes in HAT foci may explain the persistence and the resurgence phenomena of the disease and also the epidemic and the endemic status of some Central African sleeping sickness foci. The MGE-PCR technique represents a simple, rapid, and specific method to differentiate Central African T. brucei s.l. isolates.  相似文献   

3.
The ingi (long and autonomous) and RIME (short and nonautonomous) non--long-terminal repeat retrotransposons are the most abundant mobile elements characterized to date in the genome of the African trypanosome Trypanosoma brucei. These retrotransposons were thought to be randomly distributed, but a detailed and comprehensive analysis of their genomic distribution had not been performed until now. To address this question, we analyzed the ingi/RIME sequences and flanking sequences from the ongoing T. brucei genome sequencing project (TREU927/4 strain). Among the 81 ingi/RIME elements analyzed, 60% are complete, and 7% of the ingi elements (approximately 15 copies per haploid genome) appear to encode for their own transposition. The size of the direct repeat flanking the ingi/RIME retrotransposons is conserved (i.e., 12-bp), and a strong 11-bp consensus pattern precedes the 5'-direct repeat. The presence of a consensus pattern upstream of the retroelements was confirmed by the analysis of the base occurrence in 294 GSS containing 5'-adjacent ingi/RIME sequences. The conserved sequence is present upstream of ingis and RIMEs, suggesting that ingi-encoded enzymatic activities are used for retrotransposition of RIMEs, which are short nonautonomous retroelements. In conclusion, the ingi and RIME retroelements are not randomly distributed in the genome of T. brucei and are preceded by a conserved sequence, which may be the recognition site of the ingi-encoded endonuclease.  相似文献   

4.
The African trypanosome, Trypanosoma brucei, is a zoonotic parasite transmitted by tsetse flies. Two of the three subspecies, T. brucei gambiense and T.b. rhodesiense, cause sleeping sickness in humans whereas the third subspecies, T.b. brucei, is not infective to humans. We propose that the key to understanding genetic relationships within this species is the analysis of gene flow to determine the importance of genetic exchange within populations and the relatedness of populations. T.brucei parasites undergo genetic exchange when present in infections of mixed genotypes in tsetse flies in the laboratory, although this is not an obligatory process. Infections of mixed genotype are surprisingly common in field isolates from tsetse flies such that there is opportunity for genetic exchange to occur. Population genetic analyses, taking into account geographical and host species of origin, show that genetic exchange occurs sufficiently frequently in the field to be an important determinant of genetic diversity, except where particular clones have acquired the ability to infect humans. Thus, T. brucei populations have an 'epidemic' genetic structure, but the better-characterized human-infective populations have a 'clonal' structure. Remarkably, the ability to infect humans appears to have arisen on multiple occasions in different geographical locations in sub-Saharan Africa. Our data indicate that the classical subspecies terminology for T. brucei is genetically inappropriate. It is an implicit assumption in most infectious disease biology that when a zoonotic pathogen acquires the capability to infect humans, it does so once and then spreads through the human population from that single-source event. For at least one major pathogen in tropical medicine, T. brucei, this assumption is invalid.  相似文献   

5.

Background  

Trypanosoma brucei is the causative agent of human sleeping sickness and animal trypanosomiasis in sub-Saharan Africa, and it has been subdivided into three subspecies: Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause sleeping sickness in humans, and the nonhuman infective Trypanosoma brucei brucei. T. b. gambiense is the most clinically relevant subspecies, being responsible for more than 90% of all trypanosomal disease in humans. The genome sequence is now available, and a Mendelian genetic system has been demonstrated in T. brucei, facilitating genetic analysis in this diploid protozoan parasite. As an essential step toward identifying loci that determine important traits in the human-infective subspecies, we report the construction of a high-resolution genetic map of the STIB 386 strain of T. b. gambiense.  相似文献   

6.
7.
8.
Control of human African trypanosomiasis (HAT) is dependent on accurate diagnosis and treatment of infected patients. However, sensitivities of tests in routine use are unsatisfactory, due to the characteristically low parasitaemias in naturally infected individuals. We have identified a conserved sequence in the repetitive insertion mobile element (RIME) of the sub-genus Trypanozoon and used it to design primers for a highly specific loop-mediated isothermal amplification (LAMP) test. The test was used to analyse Trypanozoon isolates and clinical samples from HAT patients. The RIME LAMP assay was performed at 62 degrees C using real-time PCR and a water bath. DNA amplification was detectable within 25min. All positive samples detected by gel electrophoresis or in real-time using SYTO-9 fluorescence dye could also be detected visually by addition of SYBR Green I to the product. The amplicon was unequivocally confirmed through restriction enzyme NdeI digestion, analysis of melt curves and sequencing. The analytical sensitivity of the RIME LAMP assay was equivalent to 0.001 trypanosomes/ml while that of classical PCR tests ranged from 0.1 to 1000 trypanosomes/ml. LAMP detected all 75 Trypanozoon isolates while TBR1 and two primers (specific for sub-genus Trypanozoon) showed a sensitivity of 86.9%. The SRA gene PCR detected 21 out of 40 Trypanosoma brucei rhodesiense isolates while Trypanosoma gambiense-specific glycoprotein primers (TgsGP) detected 11 out of 13 T. b. gambiense isolates. Using clinical samples, the LAMP test detected parasite DNA in 18 out of 20 samples which included using supernatant prepared from boiled blood, CSF and direct native serum. The sensitivity and reproducibility of the LAMP assay coupled with the ability to detect the results visually without the need for sophisticated equipment indicate that the technique has strong potential for detection of HAT in clinical settings. Since the LAMP test shows a high tolerance to different biological substances, determination of the appropriate protocols for processing the template to make it a user-friendly technique, prior to large scale evaluation, is needed.  相似文献   

9.
In recent years a wide variety of biochemical and molecular typing systems has been employed in the study of parasite diversity aimed at investigating the level of genetic diversity and delineating the relationship between different species and subspecies. However, such methods have failed to differentiate between two of the classically defined subspecies of the protozoan parasite Trypanosoma brucei: the human infective, T. b. rhodesiense, which causes African sleeping sickness, and the non-human infective T. b. brucei. This has led to the hypothesis that T. b. rhodesiense is a host range variant of T. b. brucei. In this paper we test this hypothesis by examining highly polymorphic tandemly repeated regions of the trypanosome genome, i.e., minisatellite loci. We have employed the technique of minisatellite variant repeat mapping by PCR (MVR-PCR), which determines the distribution of variant repeat units along the tandem array of one minisatellite, MS42. The maps generated by this technique not only allow unequivocal allele identification but also contain within them cladistic information which we used to determine the possible genetic relationship between the different subspecies of T. brucei. Our findings revealed that human infective (T. b. rhodesiense) isolates from Uganda are more closely related to the local non-human infective isolates (T. b. brucei) than they are to other human infective stocks from different regions, suggesting that human infectivity has originated independently in these different geographical regions. This would infer that the separate classification of all human infective stocks from East Africa into the subspecies T. b. rhodesiense is genetically inappropriate and it would be better to consider geographically separate populations as host range variants of T. brucei brucei or perhaps as a series of different subspecies. Based on these data, it is clear that MVR mapping is a very useful tool for the analysis of zoonotic eukaryotic pathogens where delineation of the origins of outbreaks of disease and definition of human infective strains are key questions.  相似文献   

10.
A novel trypanosome lytic factor (TLF) has been characterized that protects humans from infection by Trypanosoma brucei brucei. The mechanism of trypanolysis is unknown; contrary to one hypothesis, TLF does not kill trypanosomes by generating oxygen radicals. However, these trypanosomes become human-infective when they express a serum-resistance-associated gene.  相似文献   

11.
12.
Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of microorganisms. We have investigated genetic variation at 15 microsatellite loci of T. evansi isolated from camels in Sudan and Kenya to evaluate the genetic information partitioned within and between individuals and between sites. We detected a strong signal of isolation by distance across the area sampled. The results also indicate that either, and as expected, T. evansi is purely clonal and structured in small units at very local scales and that there are numerous allelic dropouts in the data, or that this species often sexually recombines without the need of the "normal" definitive host, the tsetse fly or as the recurrent immigration from sexually recombined T. brucei brucei. Though the first hypothesis is the most likely, discriminating between these two incompatible hypotheses will require further studies at much localized scales.  相似文献   

13.
Sex and evolution in trypanosomes   总被引:2,自引:0,他引:2  
Trypanosoma brucei is still the only kinetoplastid known to undergo genetic exchange, but it seems unreasonable to suppose that it evolved this process all by itself. The position of T. brucei on a molecular phylogenetic tree constructed from 18S ribosomal RNA gene sequences offers no clues to the likely existence of genetic exchange in trypanosome species other than the Salivaria, because this group of trypanosomes appears to have diverged from the rest a very long time ago. Antigenic variation is one characteristic shared by the Salivaria, which has been particularly well-studied in T. brucei. The large proportion of the genome devoted to variant antigen genes and related sequences in T. brucei, suggests a possible role for genetic exchange in enhancing the diversity of the repertoire. Alternatively, genetic exchange may counter potential excessive double-strand DNA damage brought about by the DNA rearrangements associated with antigenic variation. The remarkable biparental inheritance of organelle DNA (=kinetoplast DNA) in T. brucei is without precedent in other eukaryotes. The result of genetic exchange is to enhance the heterogeneity of the kinetoplast DNA minicircles.  相似文献   

14.
Drosophila mercatorum is a species that can give rise to totally homozygous parthenogenetic strains. Using the technique of DNA-DNA hybridization, we have assessed the overall single-copy DNA differences among three independently derived strains that represent three independent genomes. Among strains, the average difference between homoduplex and heteroduplex median melting temperatures is 1.3 degrees C. This represents greater than or equal to 1.3% base-pair mismatch. Normalized percent of reassociation indicates further genetic differences, probably reflecting insertion/deletion differences and/or regions of the genome that are highly variable. This overall intraspecific genetic variation is higher than generally is thought to exist but is consistent with growing evidence of extensive DNA diversity within species of invertebrates. High intraspecific DNA variation may be correlated with rapid phyletic rates of evolution. Because of this high level of variation, the technique of DNA-DNA hybridization may be used to study intraspecific variation in invertebrates but is limited in its usefulness for higher systematic studies.   相似文献   

15.
African trypanosomes of the Trypanosoma brucei group are agents of disease in man and animals. They present unique biochemical characteristics such as the need for preformed purines and have extensive salvage mechanisms for nucleoside recovery. In this regard we have shown that trypanosomes have a dedicated transporter for S-adenosylmethionine (AdoMet), a key metabolite in transmethylation reactions and polyamine synthesis. In this study we compared the apparent kinetics of AdoMet transport, cytosolic AdoMet pool formation, and utilization of AdoMet in protein methylation reactions using two isolates: Trypanosoma brucei brucei, a veterinary parasite, and Trypanosoma brucei rhodesiense, a human pathogen that is highly refractory and has greatly reduced susceptibility to standard trypanocidal agents active against T. b. brucei. The apparent Km values for [methyl-3H]AdoMet transport, derived by Hanes-Woolf analysis, for T. b. brucei was 4.2 and 10 mM for T. b. rhodesiense, and the Vmax values were 124 and 400 micromol/liter/min, respectively. Both strains formed substantial cytosolic pools of AdoMet, 1600 nmol/10(9) T. b. brucei and 3500 nmol/10(9) T. b. rhodesiense after 10 min incubation with 25 mM exogenous AdoMet. Data obtained from washed trichloroacetic acid precipitates of cells incubated with [methyl-3H]AdoMet indicated that the rate of protein methylation in T. b. brucei was fourfold greater than in T. b. rhodesiense. These results demonstrate that the unique rapid uptake and utilization of AdoMet by African trypanosomes is an important consideration in the design and development of new agents of potential use in chemotherapy.  相似文献   

16.
Tularemia is a zoonotic disease, occurring throughout the Northern Hemisphere. The causative agent, the bacterium Francisella tularensis, is represented by two main types. Type A is found in North America, whereas type B is mainly found in Asia and Europe and to a minor extent in North America. No routine technique for rapid diagnosis of tularemia has been generally applied. We have partially sequenced 16S rRNAs of two F. tularensis strains, as well as the closely related Francisella novicida. Of 550 nucleotides analyzed, only one difference in 16S rRNA primary sequence was found. This 16S rRNA analysis enabled the construction of oligonucleotides to be used as genus- and type-specific probes. Such probes were utilized for the establishment of a method for rapid and selective detection of the organism. This method allowed identification of Francisella spp. at the level of genus and also discrimination of type A and type B strains of F. tularensis. The analysis also permitted the detection of F. tularensis in spleen tissue from mice infected with the bacterium. The results presented will enable studies on the epizootiology and epidemiology of Francisella spp.  相似文献   

17.
我国小鹅瘟研究进展及成就   总被引:1,自引:0,他引:1  
小鹅瘟是导致雏鹅死亡的常见疾病之一,可造成巨大经济损失,严重危害养鹅业的发展。为了科学认识和积极防控小鹅瘟,我国同行进行了长期不懈的研究,取得了一系列原创性成果。在全世界率先发现并鉴定了小鹅瘟病毒,并对其变异特点进行了遗传进化分析,基本调研清楚了小鹅瘟在我国的发生区域和流行规律。在传统检测技术的基础上,引入免疫学技术和分子生物学技术,建立了一系列快速检测新方法;研制成功高免血清、种鹅用弱毒疫苗、雏鹅用弱毒疫苗和细胞适应弱毒株培育的新型疫苗,使我国小鹅瘟得到了有效的控制。这些成果和进展为我国小鹅瘟的研究与防治奠定了基础。  相似文献   

18.
Protein kinases represent promising drug targets for a number of human and animal diseases. The recent completion of the sequenced genomes of three human-infective trypanosomatid protozoa, Leishmania major, Trypanosoma brucei and Trypanosoma cruzi, has allowed the kinome for each parasite to be defined as 179, 156 and 171 eukaryotic protein kinases respectively, that is about one third of the human complement. The analysis revealed that the trypanosomatids lack members of the receptor-linked or cytosolic tyrosine kinase families, but have an abundance of STE and CMGC family protein kinases likely to be involved in regulating cell cycle control, differentiation and response to stress during their complex life-cycles. In this review, we examine the prospects for exploiting differences between parasite and mammalian protein kinases to develop novel anti-parasitic chemotherapeutic agents.  相似文献   

19.
Smith HE 《BioTechniques》2011,50(2):96-97
Insertion mutagenesis via mobile genetic element is a common technique for the analysis of gene function in model organisms. Next-generation sequencing offers an attractive approach for localizing the site of insertion, but alignment-based mapping of mobile genetic elements is challenging. A computational method for identifying insertion sites is reported herein. The technique was validated by mapping transposons in both bacterial and nematode species. The approach should be extensible to other systems that employ mobile genetic elements to generate mutations.  相似文献   

20.
Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory method to investigate differences among pathogen strains in their performance in the field. The method exploits epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号