首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold-stored plants of strawberry cultivars Tamella, Cambridge Favourite and Redgauntlet were more susceptible to pathogenic isolates of Phytophthora cactorum than similar plants which had not been cold-stored. Indigenous nonpathogenic isolates of P. cactorum did not cause crown rot in cold-stored plants, although a small number of symptomless latent infections occurred. The majority of P. cactorum isolates causing crown rot symptoms were taken from infected strawberry crowns, although two isolates from gooseberry plants, but of uncertain origin, were also pathogenic. Outbreaks of crown rot in areas with no previous history of the disease therefore probably result from the importation of non-indigenous inoculum with planting material. Assessments of the timing of infection in relation to cold storage revealed that a high incidence of death in the cold store and chronic wilt symptoms on planting from the store resulted from initiating symptomless infections prior to cold storage. However, infection during the period immediately after cold storage resulted in rapid wilt symptoms of Phytophthora crown rot. When plated in sterile distilled water for 24 h, pieces of tissue from infected plants which had died during cold storage produced large numbers of sporangia and zoospores. This indicates that such plant material could provide a potent source of inoculum for infections in the post storage thawing environment. It is proposed that a combination of heightened host susceptibility resulting from cold storage and the presence of scatted latent infections or infected debris among the plants could result in a sudden, large scale appearance of crown rot, as sometimes is seen with cold-stored plantings of strawberries.  相似文献   

2.
The relationship between vertically transmitted asexual fungal grass endophytes and their hosts is considered to be mutualistic. Results from agronomic field support this line of reasoning but recent studies have shown more variable results in natural systems. We investigated how high and low nutrient and water treatments affected biomass allocation patterns of endophyte‐infected and uninfected Festuca pratensis and F. rubra in greenhouse experiments over two growing seasons. Irrespective of infection status, both grass species showed improved performance on highly fertilized and watered soils. However, infected F. pratensis plants produced larger tillers than endophyte‐free plants on soil low in nutrients and water in the first growing season, although they (E+) otherwise showed decreased performance on nutrient‐poor soil. In low nutrient and water conditions, endophyte‐infected plants produced less tillers and had lower total biomass compared to uninfected plants, and displayed a negative phenotypic correlation between seed production and vegetative growth. The latter indicates costs of reproduction when the plant shares common resources with the fungal endophyte. However, endophyte infection status (E+, E?) interacted significantly with the soil fertilisation in terms of plant growth, having a stronger positive effect on growth in infected F. pratensis plants. In F. rubra, endophyte‐infected plants showed higher vegetative growth in fertilized and watered soils compared to uninfected plants. However, infected plants tended to produce fewer inflorescences. This had no effect on seed production, perhaps because seed production was partly replaced by asexual pseudovivipary. Contrary to the general assumption in the literature that fungal endophytes are plant mutualists, these findings suggest that the costs of endophytes may outweigh their benefits in resource limited conditions. However, the costs of endophyte infections appear to differ among the grass species studied; costs of endophytes were mainly detected in F. pratensis under low nutrient conditions. We propose that differences in response to endophyte infection in these species may depend on the differences in life‐history strategies and environmental requirements of these two fescue and fungal species and may change during the life span of the plant.  相似文献   

3.
Summary The epidemiology of rust caused by the fungus Melampsora lini and the effects of infection by this pathogen on its host, the herbaceous perennial Linum marginale, were determined in the field and in garden experiments. There was considerable natural variability in disease levels over the four years (1986–1989) of the study. In two years (1986, 1989) major rust epidemics occurred. In the field, the main effect of disease was to reduce survivorship during the winter following infection. Plants which were heavily infected during the 1986 or 1989 growing seasons had reduced survivorship relative to more lightly infected plants. Melampsora lini infections did not appear to affect survivorship in either 1987 or 1988. Flowering was correlated with environmental factors and the number of stems a plant possessed. A severe drought in 1987 completely inhibited flowering. In the other three years the number of flowers produced by a plant was strongly positively correlated with the number of stems it possessed. Disease levels had no consistent effect on flowering. Controlled garden experiments were also used to examine the response of seedlings and adult plants to infection. These showed that both the timing and severity of disease appears to determine the effect of M. lini infections on L. marginale. Early, severe infection reduced growing season and overwintering survivorship as well as capsule production. However, plants in the field were most often infected only after flowering had begun, and the predominant effect of infection was a reduction in overwintering survivorship. The high variability in disease levels from year to year and the deferred nature of the effect of the rust on its host have significant implications for the design of experiments aimed at assessing the role of diseases in plant communities.  相似文献   

4.
The rate of spread of viruses transmitted by the aphid Amphorophora idaei into genotypes of raspberry differing in resistance to infestation by A. idaei was studied in a field experiment which exposed plants to large numbers of infective aphids. Under these conditions, genotypes that are readily colonised by A. idaei were totally infected with virus after two to three growing seasons, whereas genotypes with a high degree of resistance were substantially free of virus after four growing seasons but 56% of plants were infected after seven seasons. Genotypes with intermediate resistance were also substantially free of virus after three seasons but 76% of plants were virus infected after seven seasons. The effectiveness of resistance to A. idaei in raspberry in restricting spread of viruses transmitted by this aphid is discussed.  相似文献   

5.
Mealybugs and aphids are insects which damage grass species. The effects of fungal endophytes on the feeding of the mealybug, Phenococcus solani Ferris (Homoptera: Pseudococcidae), and barley aphid, Sipha maydis Passerini (Homoptera: Aphididae), on tall fescue, Festuca arundinacea Schreb. and meadow fescue, Festuca pratensis Huds., were studied under greenhouse conditions. Mealybugs preferred endophyte‐free (E–) clones over their endophyte‐infected (E+) counterparts. E+ plants had a significantly lower number of mealybugs than E– plants. A mixture of E+ and E– plants supported intermediate mealybug numbers, between pure plantings of E+ and E– grasses. Barley aphids released on to plant materials were deterred from feeding and could not persist on E+ plants. E– plants did not survive because of aphid damage, while E+ plants generally re‐grew, but were damaged to some degree. The results showed that the use of pure stands of endophyte‐infected grasses or a mixed stand of infected and non‐infected plants may increase the persistence and durability of turf and forage grass species in the presence of foliar damaging insects.  相似文献   

6.
In three field experiments in 1985 and 1986, we studied the effect of the date of primary infection on the spread of beet yellows closterovirus (BYV) and beet mild yellowing luteovirus (BMW) from artificially inoculated sugar beet plants. Laboratory-reared vector aphids, Myzus persicae, were placed on these sources of virus. There was no substantial natural immigration of vectors or viruses. In two experiments, one with BMYV in 1985 and the other in BYV in 1986, populations of vector aphids remained low and there was little virus spread, i.e. c. 50 infected plants from one primarily infected source. The cause of this small amount of spread was the low number of vector aphids. In the third experiment, with BYV in 1986, large populations of M. persicae developed and there was substantial virus spread: c. 2000 infected plants in the plots which were inoculated before canopy closure. In later-inoculated plots in the same experiment, there was much less spread: c. 100 infected plants per virus source plant. Differences between fields in predator impact are implicated as the most probable factor causing differences in vector establishment and virus spread between these three experiments. Virus spread decreased with later inoculation in all three experiments. A mathematical model of virus spread incorporating results from our work has been used to calculate how the initial proportion of infected plants in a crop affects the final virus incidence. This model takes into account the effect of predation on the development of the aphid populations. The processes underlying the spread and its timing are discussed.  相似文献   

7.
Distribution ofChilo partellus egg masses was studied in field, greenhouse, and laboratory experiments. The eggs were laid in batches mainly on the lower side and the lower leaves of the plant. The egg batch size ranged from 1 to 169 eggs, with a median of 33.5 eggs per batch (average, 40.5). Oviposition ofC. partellus is described at two levels. The first level, choice of oviposition plants, followed a random distribution. The second level, number of egg batches per plant, followed an aggregated distribution in the field, where more than one egg batch was deposited on the same plant by the same female, which was found on 25% of the oviposition plants. A mechanism for egg-layingC. partellus females to perceive preceding oviposition or injured plants could not be detected. Oviposition site choice seemed to be mediated by tactile stimuli.  相似文献   

8.
Summary Virus-infected plants are often symptomless and may be inadvertently used as explant sources in tissue culture research. Our objective was to determine the effect of virus infection on micropropagation. We studied the effects of single and multiple infections of three common raspberry viruses on the in vitro culture of ‘Malling Landmark’ red raspberry (Rubus idaeus L.). Virus-infected reaspberry plants were produced by leaf-graft inoculation from known-infected plants onto virus-free ‘Malling Landmark’. Single-virus source plants were infected with either tobacco streak ilarvirus (TSV), tomato ringspot nepovirus (TomRSV), or raspberry bushy dwarf idaeovirus (RBDV) and were free of other viruses as determined by enzyme-linked immunosorbent assay (ELISA) and bioassay. Virus-free, single, and multiple virus-infected ‘malling Landmark’ explants were initiated into culture and multiplied on Anderson's medium with 8.9 μM N6-benzyladenine (BA). At the end of the multiplication tests, ELISA reconfirmed virus infections. In vitro multiplication of ‘Malling Landmark’ was significantly reduced by multiple infections, and multiplication of plants infected with all three viruses (RBDV+TomRSV+TSV) was less than half that of virus free cultures. Shoot height and morphology of in vitro cultures were not influenced by virus infection. The greenhouse stock plant with the three-virus infection was stunted and yellow compared to the control and the other infected plants. Part of a thesis submitted by C.-W.V.T. in partial fulfilment of the requirements for the MS degree. The use of trade names in this publication does not imply endorsement by the U.S. Department of Agriculture or Oregon State University.  相似文献   

9.
Epiphytic and endophytic fungal infections often enhance plant growth. However, supporting active fungal tissue may be costly to plants in low-nutrient conditions and may affect the spatial distribution of host plants in heterogeneous environments. We examined the field distribution of Danthonia spicata infected and uninfected by the epiphytic fungus Atkinsonella hypoxylon relative to soil resource levels. We also conducted a greenhouse experiment to determine how D. spicata growth and performance responded to soil fertility and moisture. In two of three field populations, locations where A. hypoxylon occurred had higher ammonia, but lower soil moisture, than locations where D. spicata were uninfected. Infected and uninfected plants had similar growth rates across greenhouse treatments, but infected plants had a performance (size × survival) disadvantage relative to uninfected plants in high-nutrient, high-moisture and low-nutrient, low-moisture conditions. Field locations with D. spicata had low soil moisture, thus the performance disadvantage of infected plants in low-nutrient, low-moisture conditions corresponds to field observations that infected plants are rare in habitats with low ammonia. In a field common garden, infected plants had higher nitrogen concentrations than uninfected plants, suggesting that high nitrogen demand by A. hypoxylon may exclude infected plants from low-fertility field locations.  相似文献   

10.
Neotyphodium endophytes are asexual, seed-borne fungal symbionts that are thought to interact mutualistically with their grass hosts. Benefits include increased growth, reproduction, and resistance to herbivores via endophytic alkaloids. Although these benefits are well established in infected introduced, agronomic grasses, little is known about the cost and benefits of endophyte infection in native grass populations. These populations exist as mosaics of uninfected and infected plants, with the latter often comprised of plants that vary widely in alkaloid content. We tested the costs and benefits of endophyte infections with varying alkaloids in the native grass Achnatherum robustum (sleepygrass). We conducted a 4-year field experiment, where herbivory and water availability were controlled and survival, growth, and reproduction of three maternal plant genotypes [uninfected plants (E−), infected plants with high levels of ergot alkaloids (E+A+), and infected plants with no alkaloids (E+A−)] were monitored over three growing seasons. Generally, E+A+ plants had reduced growth over the three growing seasons and lower seed production than E− or E+A− plants, suggesting a cost of alkaloid production. The reduction in vegetative biomass in E+A+ plants was most pronounced under supplemented water, contrary to the prediction that additional resources would offset the cost of alkaloid production. Also, E+A+ plants showed no advantage in growth, seed production, or reproductive effort under full herbivory relative to E− or E+A− grasses, contrary to the predictions of the defensive mutualism hypothesis. However, E+A+ plants had higher overwintering survival than E+A− plants in early plant ontogeny, suggesting that alkaloids associated with infection may protect against below ground herbivory or harsh winter conditions. Our results suggest that the mosaic of E−, E+A+, and E+A− plants observed in nature may result from varying biotic and abiotic selective factors that maintain the presence of uninfected plants and infected plants that vary in alkaloid production.  相似文献   

11.
M. Zeroni  J. Gale 《Plant and Soil》1987,104(1):93-98
Rose plants (Rosa hybrida ‘Sonia’=‘Sweet Promise’) were grown in heated (minimum night temperature 17°C), and unheated greenhouses with or without root heating to 21°C. These trials covered 6 growth cycles extending over two winter seasons. In the heated greenhouse, root heating did not increase yield, flower quality or plant development. In the unheated greenhouse, root-heated plants grew as well as those in the air-heated greenhouse as long as the air temperature did not fall below 6°C. When minimum night temperatures fell below 6°C, growth, yield and quality were reduced, irrespective of root temperature. Daytime plant water relations were studied in plants growing at 6 different root temperatures in the unheated greenhouse. Leaf resistance to water diffusion was lowest at optimal root temperature. Total leaf water potential was not significantly affected by root temperature.  相似文献   

12.
Pepino mosaic virus (PepMV) has become an important viral disease of greenhouse tomatoes worldwide. The ability of bumble‐bees (Bombus impatiens), used for pollination, to acquire and transmit PepMV was investigated, and the prevalence of PepMV in plants and bumble‐bees in commercial tomato greenhouses was determined. PepMV infection in plants was determined using enzyme‐linked immunosorbent assay, while in bumble‐bees direct real‐time PCR was used. In the first experiment, the bumble‐bees were exposed for 14 days to PepMV‐infected plants. After 14 days, almost all bumble‐bees were PepMV positive both in the hive (78.5 ± 17.5%) and in the flowers (96.3 ± 3.6%). In the second experiment, bumble‐bees were released into a greenhouse with both PepMV‐infected source plants and healthy non‐infected target plants for 14 days. At the end of the experiment, 61.0 ± 19.5% of the bees collected from the hive and 83.3 ± 16.7% of the bees sampled from the flowers were PepMV positive. Bumble‐bees transmitted PepMV from the infected to the healthy non‐infected tomato plants. Two weeks after bumble‐bee release, the virus was detected in leaf, fruit and flower samples of formerly healthy plants. After 6 weeks, the percentage of PepMV positive samples from the target plants increased to 52.8 ± 2.8% of the leaves and 80.6 ± 8.4% of the fruits. In the control greenhouse without bumble‐bees, the target plants did not become infected. Based on the infection levels in flowers, fruits and leaves, the PepMV infection occurred possibly first in the pollinated flowers, and then spread from the fruit that developed from the flowers to other parts of the plant. In commercial greenhouses where PepMV was present, 92–100% of the plants and 88–100% of the bumble‐bees were PepMV positive. No infected plant samples were found in the control commercial greenhouse, but a small number of bumble‐bees (10%) tested PepMV positive.  相似文献   

13.
A yellow strain of cowpea mosaic virus (CPMV) was transmitted in cowpea by two thrips, Sericothrips occipitalis and Taeniothrips sjostedti; two chrysomelid beetles, Ootheca mutabilis and Paraluperodes quaternus; a curculionid beetle, Nematocerus acerbus; and two acridid grasshoppers, Catantops spissus spissus and Zonocerus variegatus. Summarizing trials with single insects, the efficiency of transmission of CPMV averaged 18—21% for N. acerbus and the two grasshoppers, 55% for P. quaternus, and 71% for O. mutabilis. Twenty-two and 40% of the plants exposed to large populations of S. occipitalis and T. sjostedti, respectively, were infected. In three trials with an aphid, Aphis craccivora, 4 of 49 plants were infected with CPMV, but these infections were considered spurious because no infections occurred in any of 63 plants exposed to this insect in four other trials. A coreid bug, Riptortus dentipes, did not transmit CPMV. Mosaic symptoms in infected plants appeared 5—39 days after they were exposed to vectors. Infective virus was recovered from fresh faecal pellets of each grasshopper vector.  相似文献   

14.
M. Jiu    X.-P. Zhou    S.-S. Liu 《Journal of Phytopathology》2006,154(10):587-591
Acquisition and transmission was studied of Tomato yellow leaf curl China virus (TYLCCNV) and Tobacco curly shoot virus (TbCSV) by the B and a non‐B biotype (China‐ZHJ‐1) of Bemisia tabaci from Zhejiang, China. The frequency of TYLCCNV and TbCSV detection by PCR in whitefly adults increased with increasing length of feeding on virus‐infected plants. The virus DNA was detected by PCR in 40% of the B biotype adults tested after a period of 30 min access to infected plants and in all adults after a 12‐h period of access. All ZHJ‐1 adults acquired TYLCCNV and TbCSV after a 48‐h period of access to the virus‐infected plants. Viruliferous B and ZHJ‐1 adults retained TYLCCNV DNA for their entire life when placed on healthy cotton plants. Viruliferous ZHJ‐1 adults retained TbCSV DNA for their entire life when placed on healthy cotton plants but the B biotype adults did not. Transmission of TYLCCNV was achieved with one B or ZHJ‐1 adult per plant, and the probability of transmission reached 100% when the number of adults was increased to 10 per plant. The efficiency for TYLCCNV transmission to healthy plants by adults of both B and ZHJ‐1 was much higher than that for TbCSV.  相似文献   

15.
This paper presents a hydroponic system for culturing and maintaining the VAM fungus Glomus intraradices in symbiosis with linseed (Linum usitatissimum L.) under greenhouse conditions in pure nutrient solution. It was possible to obtain large quantities of mycorrhizal host plant roots as well as extramatrical mycelium and chlamydospores free of impeding residues of solid substrate components. Starting from linseed donor plants inoculated in sand and transferred to the nutrient solution, new infections arose within the fast growing root system, hyphae spread out into the liquid and infected mycorrhiza-free receptor plants. Data for infection rates and plant growth parameters are presented. In comparsion to other culture systems for VAM fungi, the advantages of this hydroponic system are discussed and potential uses suggested.  相似文献   

16.
17.
To control whiteflies on soybean crops in an effective and economically viable way, it is necessary to quantify the occurrence and density of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on the leaflets. Estimating the number of B. tabaci cm‐2 on leaflets is difficult, because its distribution pattern on the various parts of the plant canopy and on the leaflet surface is unknown. The aim of this study was to evaluate the distribution of B. tabaci nymphs on soybean plants and leaflets, under greenhouse and field conditions. One hundred soybean plants infested with all nymph stages were randomly selected in a greenhouse, and 25 in a field. Of each plant, a trifoliate leaf of the middle third of the plant’s height was selected and its central leaflet was collected (greenhouse experiment), or a trifoliate leaf of each third layer (upper, middle, and lower), of which the left, central, and right leaflets were collected (field experiment). The collected leaflets were divided into 32 sections (1 cm2 per section), arranged in an array of eight rows and four columns to count whitefly nymphs. The Morisita index (Iδ), the negative binomial parameter k, and the dispersion index (I) were calculated for each leaflet, using the number of nymphs as variable. The highest population densities of whitefly nymphs were found in the middle third of the soybean plants. In leaflets from the middle third, the nymphs concentrated in the middle and bottom parts of the leaflets, whereas in the upper and lower thirds of the plant, they were randomly distributed on the leaflets.  相似文献   

18.
Following the consumption of baculovirus occlusion bodies (OBs), insects may succumb to lethal disease, but the survivors can harbour sublethal covert infections and may develop, reproduce and transmit the infection to their offspring. The use of different chemical and biological stressors was examined to determine whether they could be used to activate covert infections in populations of Spodoptera exigua larvae infected by the homologous nucleopolyhedrovirus (SeMNPV). Treatment of covertly infected S. exigua second instars with Tinopal UNPA‐GX, hydroxylamine, paraquat, Bacillus thuringiensis var. kurstaki crystals, spores or mixtures of crystals + spores, or a heterologous nucleopolyhedrovirus (Chrysodeixis chalcites SNPV) did not result in the activation of SeMNPV covert infections. Similarly, virus treatments involving permissive NPVs did not result in greater mortality in covertly infected insects compared with the virus‐free controls. In contrast, 0.1% copper sulphate, 1% iron (II) sulphate and 1 mg/l sodium selenite treatments resulted in 12–41% lethal polyhedrosis disease in covertly infected larvae. A greenhouse trial using copper sulphate and sodium selenite as activation factors applied to covertly infected S. exigua larvae on sweet pepper plants resulted in very low levels of SeMNPV activation (<3%). These results highlight the important roles of copper, iron and selenium in insect immunity and baculovirus‐induced disease. However, these substances seem unlikely to prove useful for the activation of covert SeMNPV infections in S. exigua larvae under greenhouse conditions.  相似文献   

19.
The influence of a water deficit treatment and mycorrhizal inoculation with Pisolithus tinctorius (Pers.) Coker and Couch on the water relations, gas exchange, and plant growth in Arbutus unedo L. plants was studied in order to evaluate the hardening process during the nursery period. The ability to withstand the adverse conditions after transplantation was also studied. Mycorrhizal and non-mycorrhizal seedlings of A. unedo were pot-grown for 4 months in a greenhouse (nursery period), during which time two irrigation treatments, well watered (100% water holding capacity, leaching 20% of the applied water) and deficit irrigation (50% of the well watered), were applied. Subsequently, the plants were transplanted to the field and well irrigated (transplanting period), after which and until the end of the experiment they received no water (establishment period). At the end of the nursery period, both water deficit and mycorrhizae were seen to have altered the plant morphology. Mycorrhizal plants had lower leaf area and improved leaf color parameters, while the water deficit increased root dry weight and the root/shoot ratio. Mycorrhizal plants had higher leaf water potential values than non-inoculated plants. Mycorrhizae increased stomatal conductance and photosynthesis values, especially in stressed plants. Drought led to an osmotic adjustment and a decrease in the leaf water potential values at turgor loss point in the mycorrhizal plants. Cell wall rigidity, measured as increased bulk modulus of elasticity, was decreased by the mycorrhizae effect. After transplanting, no differences were found in the water relations or gas exchange values between treatments. During the establishment period, the plants that had been exposed to both drought and mycorrhizae showed a better water status (higher leaf water and turgor potential values) and higher gas exchange values. In conclusion, water deficit and mycorrhizal inoculation of A. unedo plants in nursery produced changes in tissue water relations, gas exchange, and growth, related with the acclimation process in the seedlings, which could provide better resistance to drought and stress conditions following planting.  相似文献   

20.
Infection of plants by pathogens can influence their attractiveness and suitability to insect vectors and other herbivores. Here we examined the effects of Citrus sinensis (L.) Osbeck (Rutaceae) infection by the bacterium Xylella fastidiosa, which causes citrus variegated chlorosis (CVC), on the feeding preferences of two sharpshooter vectors, Dilobopterus costalimai Young and Oncometopia facialis (Signoret) (Homoptera: Cicadellidae). Experiments were performed inside observation chambers, in which a healthy plant and an infected one (with or without CVC symptoms) were supplied to a group of 40 sharpshooters. The number of insects that selected each treatment was recorded at several time intervals in 48 h. In another experiment, the ingestion rate on healthy and infected (symptomatic or not) plants was evaluated by measuring the liquid excretion of sharpshooters that were confined on branches of each plant for 72 h. Both sharpshooter species preferred healthy plants to those with CVC symptoms. However, O. facialis did not discriminate between healthy citrus and symptomless infected plants. Feeding by D. costalimai was markedly reduced when confined on CVC‐symptomatic plants, but not on asymptomatic infected ones. The ingestion rate by O. facialis was not affected by the presence of CVC symptoms. The results suggest that citrus trees with early (asymptomatic) infections by X. fastidiosa may be more effective as inoculum sources for CVC spread by insect vectors than those with advanced symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号