首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
To investigate the pathogenesis of ultrasonically nebulized distilled water-induced airway narrowing, we studied the role of airway epithelial cells during a distilled water-inhalation challenge in an animal model of airway inflammation. Guinea pigs were divided into four groups: 1) a sham/saline (S/S) group: sham ozone followed by saline inhalation; 2) a sham/water (S/W) group: sham ozone followed by water inhalation; 3) an ozone/saline (O/S) group: ozone followed by saline inhalation; and 4) an ozone/water (O/W) group: ozone followed by water inhalation. After exposure to either 3.0 parts/million ozone or air at the same flow rate for 2 h, guinea pigs were anesthetized and tracheostomized, and then lung resistance (RL) was measured. For morphometric assessment, tissues were fixed with formaldehyde, stained with hematoxylin and eosin, and cut into transverse sections. Airway dimensions were either measured directly or calculated from the internal perimeter, the external perimeter, and airway wall area. There were no statistical differences in the values of RL before distilled water inhalation between the sham groups and the ozone groups. RL increased significantly after 10 min of distilled water inhalation in both the S/W group and the O/W group. In the S/W group, epithelial cells were swollen, and intercellular spaces were wider, resulting in significant increase in epithelial wall thickness, but there was no significant infiltration by inflammatory cells. In the O/S group, the epithelium showed infiltration by inflammatory cells without change in cell volume. In the O/W group, the epithelium showed both infiltration and a greater increase in epithelial wall thickness compared with the S/W group. These results suggest that airway epithelial cell swelling, induced by inhaled distilled water, increases with RL in guinea pigs and that this reaction may be accelerated by airway inflammation.  相似文献   

2.
An inhalation of ultrasonically nebulized distilled water (UNDW) induces bronchoconstriction only in asthmatics, but the mechanism underlying the response is not fully understood. We have reported that bronchoconstriction occurs immediately after UNDW is inhaled 20 min after an antigen challenge in guinea pigs. Our aim was to examine the role of lipid mediators in this response. Passively sensitized guinea pigs were anesthetized and artificially ventilated. A sulfidopeptide leukotriene receptor antagonist, KCA-757, and platelet-activating factor antagonists, Y-24180 and E6123, were administered i.v. 15 min after an aerosolized antigen challenge, and UNDW was inhaled 5 min later. KCA-757, Y-24180, or E6123 did not, significantly alter the UNDW-induced bronchoconstriction. Together with our previous data that thromboxane A2 receptor antagonists did not influence the UNDW-induced bronchoconstriction, the present results suggest that lipid mediators are not involved in the UNDW-induced bronchoconstriction in our guinea pig model.  相似文献   

3.
Hsu TH  Lai YL  Kou YR 《Life sciences》2000,66(11):971-980
A prior airway exposure to wood smoke induces a tachykinin-dependent increase in airway responsiveness to the subsequent smoke inhalation in guinea pigs (Life Sci. 63: 1513, 1998). To further investigate the time course of, and the contribution of other chemical mediators to, this smoke-induced airway hyperresponsiveness (SIAHR), two smoke challenges (each 10 ml) separated by 30 min were delivered into the lungs of anesthetized guinea pigs by a respirator. In the control animals, the SIAHR was evidenced by the bronchoconstrictive response to the second smoke challenge (SM2) which was approximately 5.2-fold greater than that to the first challenge (SM1). This SIAHR was alleviated by shortening the elapsed time between SM1 and SM2 to 10 min or by extending it to 60 min, and was abolished by extending it to 120 min. This SIAHR was reduced by pretreatment with either MK-571 (a leukotriene D4-receptor antagonist) or dimethylthiourea (a hydroxyl radical scavenger), but was not affected by pretreatment with either pyrilamine (a histamine H1-receptor antagonist) or indomethacin (a cyclooxygenase inhibitor). The smoke-induced reduction in the neutral endopeptidase activity (a major enzyme for tachykinin degradation) measured in airway tissues excised 30 min post SM1 was largely prevented by pretreatment with dimethylthiourea. However, this reduction was not seen in airway tissues excised 120 min post SM1. These results suggest that 1) the SIAHR to inhaled wood smoke has a rapid onset time following smoke inhalation and lasts for less than two hours, 2) leukotrienes and hydroxyl radical may play contributory roles in the development of this SIAHR, and 3) hydroxyl radical is the major factor responsible for the smoke-induced inactivation of airway neutral endopeptidase, which may possibly participate in the development of this SIAHR.  相似文献   

4.
The tracheobronchial epithelium has well-developed tight junctions which on a morphologic basis should be markedly resistant to penetration by protein molecules. Despite this, antigen inhalation in monkeys allergic to Ascaris suum results in the rapid onset of pulmonary physiologic changes. Recent studies in man and animals have shown that a substantial number of mast cells exist in the bronchial lumen and epithelium. We suggest that antigen-antibody interaction initially occurs on these superficial mast cells leading to mediator release and the stimulation of airway irritant receptors. Antigen challenge also results in increased epithelial permeability to protein in the Ascaris-allergic monkey, and from studies on guinea pigs we suggest that this is due to alterations in the tight junctions. Antigen challenge in the monkey also produces increased permeability to labeled histamine and hyperresponsiveness to low concentrations of histamine. We suggest that the apparent airway hyperreactivity to inhaled histamine seen after inhalation of ozone, and NO2, or after upper respiratory infections could be due to damage to epithelial tight junctions. The resultant increase in mucosal permeability would result in an increased amount of histamine reaching airway smooth muscle for a given inhaled concentration.  相似文献   

5.
We developed an animal model of late asthmatic response (LAR) in guinea pigs and examined the effects of anti-asthmatic drugs and peptide leukotriene antagonist, MCI-826, on this model. Bronchial challenge of DNP-As (Dinitrophenylated-Ascaris suum extract)-sensitized guinea pigs induced a biphasic increase in pulmonary resistance (RL) with the maximal increase being observed immediately (IAR, immediate asthmatic response) and 3 to 5 hr after antigen inhalation (LAR). Twelve of 22 guinea pigs showed both IAR and LAR. The average increases in RL for all 22 guinea pigs at IAR and LAR, were 168 +/- 13 and 207 +/- 16 (% of baseline value), respectively. Bronchoalveolar lavage (BAL) fluid of guinea pigs that received antigen, revealed increases in the numbers of eosinophils (7.3-fold compared to animals receiving saline) and neutrophils (5.3-fold compared to animals receiving saline) 4 hr after antigen inhalation. When DSCG (disodium cromoglycate) was administered (10 mg/kg, i.v.) before antigen challenge, DSCG significantly inhibited IAR (p less than 0.05) and slightly inhibited LAR (p less than 0.2). Theophylline (30 mg/kg, p.o.) administered before antigen, slightly inhibited both IAR and LAR (p less than 0.2). Salbutamol (3 mg/kg, i.p.) administered before antigen, significantly inhibited IAR (p less than 0.05), but did not affect LAR. These results were correlated with clinical trials. Moreover, peptide leukotriene antagonist, MCI-826, (E)-2,2-Diethyl-3'-[2-[2-(4- isopropyl)thiazolyl] ethenyl]succinanilic acid (0.1 mg/kg, p.o.) administered 1 hr before antigen challenge, significantly inhibited both IAR and LAR (p less than 0.05). MCI-826 (0.1 mg/kg, p.o.) administered 1.5 hr after antigen inhalation, also inhibited LAR (p less than 0.05). Analysis of BAL fluid revealed that DSCG and MCI-826 significantly inhibited the increase in eosinophils (p less than 0.05). These data suggest that leukotriene plays an important role in the development of the pathogenesis of LAR, and that our model is an useful experimental model for investigating the mechanisms of LAR and examining the effects of several anti-asthmatic drugs on LAR.  相似文献   

6.
Airway epithelium has been reported to release epithelium-derived relaxing factor (EpDRF), which inhibits contraction of airway smooth muscle. This study tested the hypothesis that airway hyperresponsiveness after inhalation of ozone in dogs results from an inability to produce EpDRF. Two groups of five dogs each were studied; one group inhaled ozone, the other dry room air. Ozone-treated dogs developed airway hyperresponsiveness, whereas the control group did not. The acetylcholine provocative concentration decreased from 4.17 (%SE 1.35) to 0.56 mg/ml (%SE 1.24) (P = 0.0006) in the ozone-treated dogs and was 18.76 (%SE 2.04) and 29.77 mg/ml (%SE 2.07) in the air-treated dogs (P = 0.47). In vitro the presence of airway epithelium reduced the constrictor responses to acetylcholine, histamine, serotonin, and KCl in trachealis strips from the control dogs. This effect of epithelium was still present in trachealis strips from dogs with airway hyperresponsiveness. These results demonstrate that EpDRF is released from canine tracheal epithelium, that this function is not impaired in dogs with airway hyperresponsiveness after inhaled ozone, and that loss of EpDRF is not responsible for the development of airway hyperresponsiveness after inhaled ozone in dogs.  相似文献   

7.
Recently, we have shown that allergen-induced airway hyperresponsiveness (AHR) after the early (EAR) and late (LAR) asthmatic reaction in guinea pigs could be reversed acutely by inhalation of the Rho kinase inhibitor Y-27632. The present study addresses the effects of pretreatment with inhaled Y-27632 on the severity of the allergen-induced EAR and LAR, the development of AHR after these reactions, and airway inflammation. Using permanently instrumented and unrestrained ovalbumin (OA)-sensitized guinea pigs, single OA challenge-induced EAR and LAR, expressed as area under the lung function (pleural pressure, P(pl)) time-response curve, were measured, and histamine PC(100) (provocation concentration causing a 100% increase of P(pl)) values were assessed 24 h before, and at 6 and 24 h after, the OA challenge (after the EAR and LAR, respectively). Thirty minutes before and 8 h after OA challenge, saline or Y-27632 (5 mM) was nebulized. After the last PC(100) value, bronchoalveolar lavage (BAL) was performed, and the inflammatory cell profile was determined. It was demonstrated that inhalation of Y-27632 before allergen challenge markedly reduced the immediate allergen-induced peak rise in P(pl), without significantly reducing the overall EAR and LAR. Also, pretreatment with Y-27632 considerably protected against the development of AHR after the EAR and fully prevented AHR after the LAR. These effects could not be explained by a direct effect of Y-27632 on the histamine responsiveness, because of the short duration of the acute bronchoprotection of Y-27632 (<90 min). In addition, Y-27632 reduced the number of total inflammatory cells, eosinophils, macrophages, and neutrophils recovered from the BAL. Altogether, inhaled Y-27632 protects against acute allergen-induced bronchoconstriction, development of AHR after the EAR and LAR, and airway inflammation in an established guinea pig model of allergic asthma.  相似文献   

8.
Neutrophil elastase has been linked to inflammatory lung diseases such as chronic obstructive pulmonary disease, adult respiratory distress syndrome, emphysema, and cystic fibrosis. In guinea pigs, aerosol challenge with human neutrophil elastase causes bronchoconstriction, but the mechanism by which this occurs is not completely understood. Our laboratory previously showed that human neutrophil elastase releases tissue kallikrein (TK) from cultured tracheal gland cells. TK has been identified as the major kininogenase of the airway and cleaves both high- and low-molecular weight kininogen to yield lysyl-bradykinin. Because inhaled bradykinin causes bronchoconstriction and airway hyperresponsiveness in asthmatic patients and allergic sheep, we hypothesized that elastase-induced bronchoconstriction could be mediated by bradykinin. To test this hypothesis, we measured lung resistance (RL) in sheep before and after inhalation of porcine pancreatic elastase (PPE) alone and after pretreatment with a bradykinin B(2) antagonist (NPC-567), the specific human elastase inhibitor ICI 200,355, the histamine H(1)-antagonist diphenhydramine hydrochloride, the cysteinyl leukotriene 1 receptor antagonist montelukast, or the cyclooxygenase inhibitor indomethacin. Inhaled PPE (125-1,000 microg) caused a dose-dependent increase in RL. Aerosol challenge with a single 500 microg dose of PPE increased RL by 132 +/- 8% over baseline. This response was blocked by pretreatment with NPC-567 and ICI-200,355 (n = 6; P < 0.001), whereas treatment with diphenhydramine hydrochloride, montelukast, or indomethacin failed to block the PPE-induced bronchoconstriction. Consistent with pharmacological data, TK activity in bronchial lavage fluid increased 134 +/- 57% over baseline (n = 5; P < 0.02). We conclude that, in sheep, PPE-induced bronchoconstriction is in part mediated by the generation of bradykinin. Our findings suggest that elastase-kinin interactions may contribute to changes in bronchial tone during inflammatory diseases of the airways.  相似文献   

9.
We examined the relationship between C-fiber-mediated, ozone-induced rapid shallow breathing and airway epithelial cell injury at different airway sites within the lower respiratory tract of conscious Wistar rats (n = 24). We combined an acute 8-h ozone inhalation with vagal perineural capsaicin treatment, a selective C-fiber conduction block, and 5-bromo-2'-deoxyuridine (BrdU) labeling as an index of epithelial injury. Vehicle-treated rats that inhaled ozone developed a rapid shallow breathing pattern during ozone inhalation, whereas the capsaicin-treated rats that inhaled ozone showed no changes in respiratory frequency. In vehicle-treated, ozone-exposed rats that developed rapid shallow breathing, a progressive increase in BrdU-labeling density (no. of BrdU-labeled cells/mm(2) airway) was observed starting at the bifurcation of the left main stem bronchi (central airway) and going down either a short or long airway path. In vehicle-treated, ozone-exposed rats, terminal bronchioles supplied by short and long airway paths had a similar degree of BrdU-labeling density that was significantly (P < 0.05) greater than the BrdU-labeling density of the proximal airways that supply them. In contrast, the attenuation of rapid shallow breathing produced by capsaicin treatment resulted in a significantly reduced BrdU-labeling density in the terminal bronchioles supplied by short airway paths compared with the terminal bronchioles supplied by long airway paths. Our data indicate that ozone-induced rapid shallow breathing protects large conducting airways while producing a more even distribution of injury to terminal bronchioles.  相似文献   

10.
Control of airway smooth muscle is provided by parasympathetic nerves that release acetylcholine onto M(3) muscarinic receptors. Acetylcholine release is limited by inhibitory M(2) muscarinic receptors. In antigen-challenged guinea pigs, hyperresponsiveness is due to blockade of neuronal M(2) receptors by eosinophil major basic protein (MBP). Because exposure of guinea pigs to ozone also causes M(2) dysfunction and airway hyperresponsiveness, the role of eosinophils in ozone-induced hyperresponsiveness was tested. Animals were exposed to filtered air or to 2 parts/million ozone for 4 h. Twenty-four hours later, the muscarinic agonist pilocarpine no longer inhibited vagally induced bronchoconstriction in ozone-exposed animals, indicating M(2) dysfunction. M(2) receptor function in ozone-exposed animals was protected by depletion of eosinophils with antibody to interleukin-5 and by pretreatment with antibody to guinea pig MBP. M(2) function was acutely restored by removal of MBP with heparin. Ozone-induced hyperreactivity was also prevented by antibody to MBP and was reversed by heparin. These data show that loss of neuronal M(2) receptor function after ozone is due to release of eosinophil MBP.  相似文献   

11.
Cough elicitation and major physiological factors influencing cough occurrence were investigated in congenitally bronchial-hypersensitive (BHS) and -hyposensitive (BHR) guinea pigs exposed to citric acid (0.3 M) aerosol for 10 min. The number of cough in BHS was significantly larger than in BHR, while the latency to cough in BHS was significantly shorter than in BHR. Pretreatment with atropine (0.2%), lidocaine (2%) or salbutamol (0.1%) aerosol and desensitization of C-fibers with capsaicin (100 mg/kg) decreased the cough numbers in both BHS and BHR. The salbutamol, atropine and capsaicin pretreatments prolonged the cough latency in BHS, but only salbutamol prolonged the latency in BHR. After salbutamol pretreatment all BHR guinea pigs exhibited cough, while 66.7% of BHS guinea pigs exhibited it. Vagal blocking by atropine suppressed coughing in both BHS and BHR. Only a small number (33.3%) of BHR guinea pigs and no BHR guinea pigs exhibited a cough response after capsaicin and lidocaine pretreatment whereas many BHS guinea pigs still produced cough after such pretreatment. The present study demonstrated that the cough responsiveness to citric acid aerosol was significantly higher in BHS than in BHR. It was revealed that airway smooth muscle contraction and functional and/or morphological development of airway nervous receptors, especially C-fiber endings, contributed to aggravation of coughing in BHS.  相似文献   

12.
Effects of a thromboxane A2 receptor antagonist (S-1452) on bronchoconstriction induced by inhaled leukotriene C4 and a leukotriene receptor antagonist (AS-35) on bronchoconstriction caused by inhalation of a thromboxane A2 mimetic (STA2) were studied in anesthetized, artificially ventilated guinea pigs in order to examine the interaction of thromboxane A2 and leukotrienes in airways. 0.01-1.0 mu g/ml of leukotriene C4 and 0.1-1.0 mu g/ml of STA 2 inhaled from ultrasonic nebulizer developed for small animals caused dose-dependent increase of pressure at the airway opening (Pao) which is considered to be an index representing bronchial response. Pretreatment of the animals with inhaled S-1452 (0.01, 0.033 mg/ml) significantly reduced the airway responses produced by 0.01,0.033,0.1,0.33 and 1.0 mu g/ml of leukotriene C4 in a dose dependent manner. While pretreatment with inhaled AS-35 (1mg) did not affect the STA2 dose-response curve. These findings suggest that leukotriene C4 activates thromboxane A2 generation while thromboxane A2 does not influence 5-lipoxygenase pathway in the airways.  相似文献   

13.
Severe postmortem bronchoconstriction has been shown previously in guinea pig lungs and linked to pulmonary blood loss during exsanguination (Lai et al., J. Appl. Physiol. 56: 308-314, 1984). To reexamine this phenomenon we measured postmortem airway function in anesthetized open-chest guinea pigs after sudden circulatory arrest. Animals were divided into 4 groups of 10 and ventilated for 15 min postmortem with different gases: 1) room air, 2) conditioned air, 3) dry 5% CO2-21% O2-74% N2, and 4) conditioned 5% CO2-21% O2-74% N2. In room air-ventilated lungs there was a 50% decrease in dynamic compliance (Cdyn) by 15 min and marked gas trapping compared with control lungs. Conditioning the room air did not attenuate these changes, but when 5% CO2 was added to the conditioned postmortem inspirate, gas trapping was eliminated and the fall in Cdyn was almost abolished. Ventilation with a dry 5% CO2 gas mixture at room temperature resulted in a 31% fall in Cdyn at 15 min but no gas trapping. We conclude that marked abnormalities of airway function occur postmortem in room air-ventilated guinea pig lungs in the absence of pulmonary blood loss. The changes are mainly due to airway hypocarbia, a known cause of bronchoconstriction, but a reduction in Cdyn can also occur if there is marked airway cooling and drying. Acute postmortem airway dysfunction can be prevented in the guinea pig by maintaining normal airway gas composition.  相似文献   

14.
The majority of otherwise healthy subjects with chronic cervical spinal cord injury (SCI) demonstrate airway hyperresponsiveness to aerosolized methacholine or histamine. The present study was performed to determine whether ultrasonically nebulized distilled water (UNDW) induces airway hyperresponsiveness and to further elucidate potential mechanisms in this population. Fifteen subjects with SCI, nine with tetraplegia (C4-7) and six with paraplegia (T9-L1), were initially exposed to UNDW for 30 s; spirometry was performed immediately and again 2 min after exposure. The challenge continued by progressively increasing exposure time until the forced expiratory volume in 1 s decreased 20% or more from baseline (PD20) or the maximal exposure time was reached. Five subjects responding to UNDW returned for a second challenge 30 min after inhalation of aerosolized ipratropium bromide (2.5 ml of a 0.6% solution). Eight of nine subjects with tetraplegia had significant bronchoconstrictor responses to UNDW (geometric mean PD20 = 7.76 +/- 7.67 ml), whereas none with paraplegia demonstrated a response (geometric mean PD20 = 24 ml). Five of the subjects with tetraplegia who initially responded to distilled water (geometric mean PD20 = 5.99 +/- 4.47 ml) were not responsive after pretreatment with ipratropium bromide (geometric mean PD20 = 24 ml). Findings that subjects with tetraplegia are hyperreactive to UNDW, a physicochemical agent, combined with previous observations of hyperreactivity to methacholine and histamine, suggest that overall airway hyperresponsiveness in these individuals is a nonspecific phenomenon similar to that observed in patients with asthma. The ability of ipratropium bromide to completely block UNDW-induced bronchoconstriction suggests that, in part, airway hyperresponsiveness in subjects with tetraplegia represents unopposed parasympathetic activity.  相似文献   

15.
Thromboxane A2 (TxA2) has been implicated in airway responses to allergen and in the bronchial hyperresponsiveness observed in asthma. Furthermore a TxA2 receptor antagonist and a TxA2 synthase inhibitor inhibit plasma exudation in airways induced by inhaled platelet-activating factor. To evaluate whether TxA2 has any direct effect on plasma exudation in the airways, we studied the effect of a stable TxA2 mimetic (U-46619; 2, 20, and 200 nmol/kg iv) on lung resistance (RL) and Evans blue dye extravasation (marker of plasma albumin; 20 mg/kg iv) at the airway levels of trachea, main bronchi, and proximal and distal intrapulmonary airways in anesthetized, tracheostomized, and mechanically ventilated guinea pigs. Injection of U-46619 produced an immediate and marked dose-dependent increase in RL, which peaked at approximately 30 s. At the highest dose of U-46619, we also observed a later increase in RL, starting at approximately 3 min and reaching a second peak at approximately 8 min. Mean systemic blood pressure increased in a dose-dependent manner [maximum 82 +/- 8 (SE) mmHg]. U-46619 also produces dose-dependent plasma exudation, measured as Evans blue dye extravasation, at all airway levels as well as into the tracheal lumen. Airway responses to U-46619 (200 nmol/kg iv) were abolished in animals pretreated with the TxA2 receptor antagonist ICI-192605 (0.5 mg/kg iv). We conclude that U-46619, despite being a vasoconstrictor, is potent in inducing plasma exudation in airways and that this effect is mediated via a TxA2 receptor.  相似文献   

16.
Chronic eosinophilic bronchitis and bronchial hyperresponsiveness have been considered to be the fundamental features of bronchial asthma. However, the role of airway eosinophils in bronchial responsiveness in vivo has not been fully discussed. The aim of this study was to investigate the direct effect of airway eosinophil accumulation on bronchial responsiveness in vivo. Guinea pigs were transnasally treated with platelet activating factor (PAF) or vehicle twice a week for a total of 3 weeks. Anesthetized guinea pigs were surgically cannulated and artificially ventilated 48 h after the last administration of PAF or vehicle. Ten minutes after the installation of artificial ventilation, ascending doses of histamine were inhaled. In a subsequent study, selective inhibitors of diamine oxidase and histamine N-methyltransferase were intravenously administered before the histamine inhalation in the PAF-treated animals. Next study was conducted 20 min after treatment with indomethacin in this study line. Finally, ascending doses of methacholine were inhaled in our animal model. Proportion of eosinophils and the number of nuclear segmentation in bronchoalveolar lavage fluid significantly increased in guinea pigs treated with PAF compared with vehicle and this finding was confirmed histologically. Nevertheless, bronchial responsiveness to inhaled histamine, but not methacholine, was significantly decreased by the PAF treatment. This bronchoprotective effect induced by PAF remained following aminoguanidine and histamine N-methyltransferase administration, but abolished by treatment of indomethacin. These results suggest that in vivo airway eosinophils may reduce nonspecific bronchial responsiveness through production of inhibitory or bronchoprotective prostanoids, but not through histaminase production.  相似文献   

17.
Refractoriness for bronchial provocation frequently occurs after different challenge tests used to assess bronchial hyperresponsiveness in asthmatic patients. We investigated whether histamine inhalation could cause refractoriness for bronchoconstriction induced by ultrasonically nebulized distilled water (UNDW) and whether histamine causes tachyphylaxis for a subsequent histamine challenge in nine stable asthmatic patients. Preinhalation of histamine induced a significant diminished bronchoconstrictor response to UNDW cumulative dose of inhaled UNDW causing a 20% fall in forced expired volume in 1 s. The mean increased from 3.5 +/- 0.8 to 11.8 +/- 2.6 (SE) ml after histamine challenge (P less than 0.01). However, repeated inhalation of histamine did not change the bronchoconstrictor response to histamine within 1 h after rechallenge (P greater than 0.5). The magnitude of refractoriness for UNDW inhalation after preinhalation of histamine was correlated to the bronchoconstrictor response to histamine (r = 0.73, P less than 0.05). We conclude that inhaled histamine can induce refractoriness for UNDW, which seems to be related to the degree of bronchial hyperresponsiveness.  相似文献   

18.
Continuous intravenous infusions of leukotriene D4 produced a prolonged but variable bronchoconstriction (approximately a 200% increase in lung resistance (RL) and a 50% decrease in dynamic compliance (Cdyn] in anesthetized and paralysed guinea pigs that peaked within 1-1.5 min and was followed by a somewhat smaller secondary plateau response. The overall response was delayed (time to peaks) but not significantly reduced by pretreatment with the cyclooxygenase inhibitor indomethacin (1 mg/kg), was markedly potentiated by the beta-adrenoceptor antagonist timolol (5 micrograms/kg), and was partially and completely blocked by pretreatment with 0.1 and 1.0 mg/kg, respectively, of the leukotriene D4 receptor antagonist MK-571. MK-571 prevented the response in indomethacin-treated guinea pigs but was considerably more active at preventing and reversing the potentiated responses (lower dose of leukotriene D4) in animals treated with indomethacin and timolol. Additional studies in indomethacin- and timolol-treated animals demonstrated that MK-571 was active with good duration of action by the aerosol route of administration (30 min and 4 h pretreatment). The technique of infusing leukotrienes into untreated, indomethacin-treated, and indomethacin- and timolol-treated guinea pigs is a useful method to study the action and interaction of leukotriene receptor antagonists.  相似文献   

19.
This study was carried out to determine whether tachykinins released from lung C-fiber afferents play a part in the bronchial hyperreactivity induced in guinea pigs by chronic exposure to cigarette smoke (CS). Two matching groups of young guinea pigs were exposed to either mainstream CS (CS group) or air (control group) for 20 min twice daily for 14-17 days. There was no difference in the baseline total pulmonary resistance (RL) between the two groups, but the baseline dynamic lung compliance was reduced ( approximately 19%) in CS animals. The responses of RL to intravenous injections of ACh, neurokinin (NK) A, and capsaicin were all markedly increased in CS animals; for example, ACh at the same dose of 5.06 microg/kg increased RL by 207% in the control group and by 697% (n = 8; P < 0. 001) in the CS group. The increased responsiveness was accompanied by significant increases in the numbers of neutrophils, eosinophils, and macrophages in the bronchoalveolar lavage fluid in CS animals. Pretreatment with SR-48968 and CP-99994, antagonists of NK(1) and NK(2) receptors, respectively, did not alter the response of RL to ACh in control animals, but it abolished the elevated bronchoconstrictive response in the CS animals. Furthermore, the immunoreactivities of substance P and calcitonin gene-related peptide in the bronchoalveolar lavage fluid collected after capsaicin challenge were significantly increased in CS animals. These results show that chronic exposure to CS induced airway mucosal inflammation accompanied by bronchial hyperreactivity in guinea pigs and that the tachykininergic mechanism plays an important role in this augmented responsiveness.  相似文献   

20.
U-60,257 inhibits O3-induced bronchial hyperreactivity in the guinea pig   总被引:1,自引:0,他引:1  
C Murlas  H K Lee 《Prostaglandins》1985,30(4):563-572
We studied the effects on ozone-induced airway hyperreactivity of U-60,257, a pyrroloprostacyclin shown to inhibit leukotriene C/D biosynthesis in vitro. A group of 5 guinea pigs were pretreated with U-60,257 (5 mg/kg IV), and studied before and 30 min after a 15 min exposure to 3.0 ppm ozone. These animals were compared to a similarly exposed group that was untreated (n = 10). Reactivity was determined by measuring specific airway resistance (SRaw) upon intravenous acetylcholine infusion in unanesthetized, spontaneously breathing animals. Prior to ozone exposure, we found that U-60,257 treatment did not affect either SRaw or muscarinic reactivity. After exposure to 3.0 ppm, all untreated guinea pigs showed substantial muscarinic hyperreactivity. In contrast, no significant change in SRaw or muscarinic reactivity occurred after ozone in any animal pretreated with U-60,257. We conclude that ozone-induced bronchial hyperreactivity in the guinea pig rapidly develops after a brief, high level exposure. This effect may be mediated, in part, by leukotrienes generated upon ozone exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号