首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the Codon Statistics Database, an online database that contains codon usage statistics for all the species with reference or representative genomes in RefSeq (over 15,000). The user can search for any species and access two sets of tables. One set lists, for each codon, the frequency, the Relative Synonymous Codon Usage, and whether the codon is preferred. Another set of tables lists, for each gene, its GC content, Effective Number of Codons, Codon Adaptation Index, and frequency of optimal codons. Equivalent tables can be accessed for (1) all nuclear genes, (2) nuclear genes encoding ribosomal proteins, (3) mitochondrial genes, and (4) chloroplast genes (if available in the relevant assembly). The user can also search for any taxonomic group (e.g., “primates”) and obtain a table comparing all the species in the group. The database is free to access without registration at http://codonstatsdb.unr.edu.  相似文献   

2.
在基因组学水平上研究密码子使用偏性模式、成因并分析进化过程中的选择压力在基因组学研究中有重要意义。文章概述了目前提出的密码子使用偏性的量化方法及实现原理。目前研究发现:有些量化密码子偏性的方法受高表达基因参考数据集未完全注释的限制,不同密码子位置对变异和选择的影响不同,以及不同密码子位置处GC含量和嘌呤含量的贡献不同。由此展望密码子偏性量化方法发展方向为:需要设计不需要相关参考基因集合先验知识的密码子使用偏性量化方法;考虑不同位置处背景核苷酸组成的密码子使用偏性的量化方法;同时考虑基因表达水平的密码子使用偏性量化方法。最后,归纳了目前可用的密码子使用偏性的量化工具和数据库。  相似文献   

3.
Abstract The influence of local base composition on mutations in chloroplast DNA (cpDNA) is studied in detail and the resulting, empirically derived, mutation dynamics are used to analyze both base composition and codon usage bias. A 4 × 4 substitution matrix is generated for each of the 16 possible flanking base combinations (contexts) using 17,253 noncoding sites, 1309 of which are variable, from an alignment of three complete grass chloroplast genome sequences. It is shown that substitution bias at these sites is correlated with flanking base composition and that the A+T content of these flanking sites as well as the number of flanking pyrimidines on the same strand appears to have general influences on substitution properties. The context-dependent equilibrium base frequencies predicted from these matrices are then applied to two analyses. The first examines whether or not context dependency of mutations is sufficient to generate average compositional differences between noncoding cpDNA and silent sites of coding sequences. It is found that these two classes of sites exist, on average, in very different contexts and that the observed mutation dynamics are expected to generate significant differences in overall composition bias that are similar to the differences observed in cpDNA. Context dependency, however, cannot account for all of the observed differences: although silent sites in coding regions appear to be at the equilibrium predicted, noncoding cpDNA has a significantly lower A+T content than expected from its own substitution dynamics, possibly due to the influence of indels. The second study examines the codon usage of low-expression chloroplast genes. When context is accounted for, codon usage is very similar to what is predicted by the substitution dynamics of noncoding cpDNA. However, certain codon groups show significant deviation when followed by a purine in a manner suggesting some form of weak selection other than translation efficiency. Overall, the findings indicate that a full understanding of mutational dynamics is critical to understanding the role selection plays in generating composition bias and sequence structure.  相似文献   

4.
5.
A novel subtype of influenza A virus 09H1N1 has rapidly spread across the world. Evolutionary analyses of this virus have revealed that 09H1N1 is a triple reassortant of segments from swine, avian and human influenza viruses. In this study, we investigated factors shaping the codon usage bias of 09H1N1 and carried out cluster analysis of 60 strains of influenza A virus from different subtypes based on their codon usage bias. We discovered that more preferentially used codons of 09H1N1 are A-ended or U-ended...  相似文献   

6.
人类基因同义密码子偏好的特征以及与基因GC含量的关系   总被引:24,自引:0,他引:24  
对人类的728个基因,按其编码区中GC的含量分成四组(从GC<0.43到GC>0.58),分别考察了这四组样本对同义密码子偏好的特征,发现在全部样本中都呈现NTG(N代表四种碱基中的任一种)特受偏爱和NCG尽量避免的特征.基因环境中GC含量与C3/G3含量(密码子第三位C和G的含量)的相关分析,以及四组样本对密码子的偏好都支持以C结尾的密码子在编码中有特殊的优势,这种优势有利于保证翻译的准确性.还考察了各种氨基酸含量随编码区GC含量不同而变化的趋势.  相似文献   

7.
We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection. Received: 10 November 1998 / Accepted: 28 January 1999  相似文献   

8.
The aim of this study was to analyze patterns of nucleotidic composition and codon usage in the pea aphid genome (Acyrthosiphon pisum). A collection of 60,000 expressed sequence tags (ESTs) in the pea aphid has been used to automatically reconstruct 5809 coding sequences (CDSs), based on similarity with known proteins and on coding style recognition. Reconstructions were manually checked for ribosomal proteins, leading to tentatively reconstruct the nea-complete set of this category. Pea aphid coding sequences showed a shift toward AT (especially at the third codon position) compared to drosophila homologues. Genes with a putative high level of expression (ribosomal and other genes with high EST support) remained more GC3-rich and had a distinct codon usage from bulk sequences: they exhibited a preference for C-ending codons and CGT (for arginine), which thus appeared optimal for translation. However, the discrimination was not as strong as in drosophila, suggesting a reduced degree of translational selection. The space of variation in codon usage for A. pisum appeared to be larger than in drosophila, with a substantial fraction of genes that remained GC3-rich. Some of those (in particular some structural proteins) also showed high levels of codon bias and a very strong preference for C-ending codons, which could be explained either by strong translational selection or by other mechanisms. Finally, genomic traces were analyzed to build 206 fragments containing a full CDS, which allowed studying the correlations between GC contents of coding and those of noncoding (flanking and introns) sequences.  相似文献   

9.
An Evaluation of Measures of Synonymous Codon Usage Bias   总被引:14,自引:0,他引:14  
Synonymous codons are not generally used at equal frequencies, and this trend is observed for most genes and organisms. Several methods have been proposed and used to estimate the degree of the nonrandom use of the different synonymous codons. The estimates obtained by these methods, however, show different levels of both precision and dispersion when coding regions of a finite number of codons are under analysis. Here, we present a study, based on computer simulation, of how the different methods proposed to evaluate the nonrandom use of synonymous codons are affected by the length of the coding region analyzed. The results show that some of these methods are heavily influenced by the number of codons and that the comparison of codon usage bias between coding regions of different lengths shows a methodological bias under different conditions of nonrandom use of synonymous codons. The study of the dispersion of the estimates obtained by the different methods gives, on the other hand, an indication of the methods to be applied to compare values of codon usage bias among coding regions of equivalent length. Received: 10 September 1997 / Accepted: 23 March 1998  相似文献   

10.
目的:通过对西藏高原人群及平原人群、恒河猴等其他5种物种的密码子使用进行分析,从而得出西藏高原人群铁调素基因(hamp)的密码子偏好性。方法:采用PCR技术获得西藏高原人群铁调素全基因序列,利用在线软件CodonW进行密码子偏好性分析,通过在线软件PredictProtein以及Signal P等软件进行西藏高原人群铁调素基因的结构分析,比较与GenBank数据库中选取的平原人群、恒河猴等其他5种物种的密码子偏好性的差异。结果:西藏高原人群的铁调素基因全长为2681 bp,由3个外显子和2个内含子组成,编码84个氨基酸的铁调素前体肽,包含信号肽、中间肽与成熟肽,其密码子偏好性与平原人群、恒河猴等其他5个物种的密码子偏好性均有不同程度的差异。结论:西藏高原人群铁调素基因hamp密码子偏好性与其他物种的密码子偏好性均有不同程度的差异。  相似文献   

11.
Prokaryotic sequences are responsible for more than just protein coding. There are two 10- to 11-base periodical patterns superimposed on the protein coding message within the same sequence. Positional auto- and cross-correlation analysis of the sequences shows that these two patterns are a short-range counter-phase oscillation of AA and TT dinucleotides and a medium-range in-phase oscillation of the same dinucleotides, spanning distances of up to ∼30 and ∼100 bases, respectively. The short-range oscillation is encoded by the amino acid sequences themselves, apparently, due to the presence of amphipathic α-helices in the proteins. The medium-range oscillation, related to DNA folding in the cell, is created largely by a special choice of the bases in the third positions of the codons. Interestingly, the amino acid sequences do contribute to that signal as well. That is, the very amino acid sequences are, to some extent, degenerate to serve the same oscillating pattern that is associated with the degenerate third codon positions. [Reviewing Editor: Dr. Richard Kliman]  相似文献   

12.
13.
The usage of synonymous codons and the frequencies of amino acids were investigated in the complete genome of the bacterium Thermotoga maritima using a multivariate statistical approach. The GC3 content of each gene was the most prominent source of variation of codon usage. Surprisingly the usage of UGU and UGC (synonymous triplets coding for Cys, the least frequent amino acid in this species) was detected as the second most prominent source of variation. However, this result is probably an artifact due to the very low frequency of Cys together with the nonbiased composition of this genome. The third trend was related to the preferential usage of a subset of codons among highly expressed genes, and these triplets are presumed to be translationally optimal. Concerning the amino acid usage, the hydropathy level of each protein (and therefore the frequency of charged residues) was the main trend, while the second factor was related to the frequency of usage of the smaller residues, suggesting that the cell economy strongly influences the architecture of the proteins. The third axis of the analysis discriminated the usage of Phe, Tyr, Trp (aromatic residues) plus Cys, Met, and His. These six residues have in common the property of being the preferential targets of reactive oxygen species, and therefore the anaerobic condition of T. maritima is an important factor for the amino acid frequencies. Finally, the Cys content of each protein was the fourth trend. Received: 22 June 2001 / Accepted: 1 October 2001  相似文献   

14.
 Codon bias and base composition in major histocompatibility complex (MHC) sequences have been studied for both class I and II loci in Homo sapiens and Pan troglodytes. There is low to moderate codon bias for the MHC of humans and chimpanzees. In the class I loci, the same level of moderate codon bias is seen for HLA-B, HLA-C, Patr-A, Patr-B, and Patr-C, while at HLA-A the level of codon bias is lower. There is a correlation between codon usage bias and G+C content in the A and B loci in humans and chimps, but not at the C locus. To examine the effect of diversifying selection on codon bias, we subdivided class I alleles into antigen recognition site (ARS) and non-ARS codons. ARS codons had lower bias than non-ARS codons. This may indicate that the constraint of codon bias on nucleotide substitution may be selected against in ARS codons. At the class II loci, there are distinct differences between alpha and beta chain genes with respect to codon usage, with the beta chain genes being much more biased. Species-specific differences in base composition were seen in exon 2 at the DRB1 locus, with lower GC content in chimpanzees. Considering the complex evolutionary history of MHC genes, the study of codon usage patterns provides us with a better understanding of both the evolutionary history of these genes and the evolution of synonymous codon usage in genes under natural selection. Received: 2 April 1998 / Revised: 2 September 1998  相似文献   

15.
密码子偏性对痘苗病毒载体表达效率影响的研究   总被引:1,自引:0,他引:1  
为了研究密码子偏性对痘苗病毒载体表达效率的影响,分别采用痘苗病毒及其宿主细胞的优势密码子对绿色荧光蛋白基因进行改造,利用荧光、Western blot和FCM等方法分析其在痘苗病毒载体系统的表达水平。结果显示,全部采用痘苗病毒优势密码子(富含A T)和全部采用宿主细胞优势密码子(富含G C),以及部分使用宿主细胞优势密码子的三种绿色荧光蛋白基因都能够有效表达,表达水平相近,表明痘苗病毒载体对目的基因密码子的使用具有很好宽容性。为了探讨这种宽容性的机理,分别利用在胞核内和在胞浆内转录的质粒载体对不同密码子偏性的绿色荧光蛋白基因进行表达分析。结果显示,胞核内转录目的基因的pcDNA3质粒载体能有效表达富含G C的绿色荧光蛋白基因,不能有效表达富含A T的绿色荧光蛋白基因,而胞浆内转录目的基因的pSCA质粒载体能同样有效表达上述不同密码子偏性的目的基因。这些结果表明,位于胞浆内的富含A U的转录产物能够有效表达,细胞核内生成的富含A U的转录产物可能受核膜屏障或其它核内因素影响而不能有效表达。因此,胞浆内繁殖的特性是痘苗病毒载体具有密码子宽容性的主要原因。此研究为痘苗病毒载体和常用真核表达载体的选择使用提供了重要实验依据。  相似文献   

16.
为探究滇黄精(Polygonatum kingianum)叶绿体全基因组特征和密码子使用偏性,利用第二代测序技术对滇黄精嫩叶进行测序,再经组装与注释后得到其叶绿体基因组全序列,通过MISA、EMBOSS和CodonW等软件对滇黄精叶绿体全基因组的SSR位点、系统发育及密码子偏好性进行分析。结果表明,滇黄精完整叶绿体基因组长度为155 852 bp,基因组平均GC含量为37.7%,其大、小单拷贝区(LSC)长度分别为84 633和185 25 bp,反向重复区长度为26 347 bp,注释了132个基因,包括86个蛋白编码基因、38个tRNA基因和8个核糖rRNA基因。叶绿体基因组中共有69个SSR位点,绝大多数属于单碱基重复的A/T类型。系统发育分析表明滇黄精与格脉黄精(P. tessellatum)亲缘关系近,可能与分布地域有关。密码子偏好性分析表明,滇黄精叶绿体基因组密码子使用模式受到自然选择影响大于突变因素,最终确定9个最优密码子。因此, 滇黄精叶绿体基因组遗传结构和系统发育位置及其密码子偏倚的分析,为叶绿体基因工程研究提供理论依据。  相似文献   

17.
The patterns and processes of molecular evolution may differ between the X chromosome and the autosomes in Drosophila melanogaster. This may in part be due to differences in the effective population size between the two chromosome sets and in part to the hemizygosity of the X chromosome in Drosophila males. These and other factors may lead to differences both in the gene complements of the X and the autosomes and in the properties of the genes residing on those chromosomes. Here we show that codon bias and recombination rate are correlated strongly and negatively on the X chromosome, and that this correlation cannot be explained by indirect relationships with other known determinants of codon bias. This is in dramatic contrast to the weak positive correlation found on the autosomes. We explored possible explanations for these patterns, which required a comprehensive analysis of the relationships among multiple genetic properties such as protein length and expression level. This analysis highlights conserved features of coding sequence evolution on the X and the autosomes and illuminates interesting differences between these two chromosome sets.[Reviewing editor: Dr. Richard Kliman]  相似文献   

18.
糜子叶绿体基因组密码子使用偏性的分析   总被引:2,自引:0,他引:2       下载免费PDF全文
密码子使用偏性(CUB)是生物体重要的进化特征,对研究物种进化、基因功能以及外源基因表达等具有重要科学意义。本研究利用糜子(Panicum miliaceum L.)叶绿体基因组中筛选出的53条蛋白编码序列,对其密码子使用模式及偏性进行了分析。结果表明,糜子叶绿体基因的有效密码子数(ENC)在37.14~61之间,多数密码子的偏性较弱。相对同义密码子使用度(RSCU)分析发现,RSCU > 1的密码子有32个,其中28个以A、U结尾,表明第3位密码子偏好使用A和U碱基。中性分析发现,GC3与GC12的相关性不显著,回归曲线斜率为0.2129,表明密码子偏性主要受到自然选择的影响;而ENC-plot分析发现大部分基因落在曲线的上方及周围,表明突变也影响了密码子偏性的形成。进一步的对应性分析发现,第1轴为主要影响因素,解释了17.92%的差异,其与ENC、GC3S值的相关性均达到显著水平,但与CBI、GCall不相关。最后,9个密码子被鉴定为糜子叶绿体基因组的最优密码子,糜子叶绿体基因组的密码子使用偏性可能受选择和突变共同作用。  相似文献   

19.
A survey of the patterns of synonymous codon preference in the HIV env gene reveals a correlation between the codon bias and the mutability requirements of different regions of the protein. At hypervariable regions in gp120 one finds a greater proportion of codons that tend to mutate nonsynonymously, but to a target that is similar in hydrophobicity and volume. We argue that this strategy results from a compromise between the selective pressure placed on the virus by the induced immune response, which favors amino acid substitutions in the complementarity determining regions, and the negative selection against missense mutations that violate structural constraints of the env protein. Received: 9 June 1997 / Accepted: 25 May 1998  相似文献   

20.
Although most codon third bases appear to be functionless, the synonymous codons so defined exhibit a strikingly nonrandom distribution (codon bias) within human and other genes. To examine this phenomenon further, we generated a database of DNA sequences encoding human transmembrane cell-surface receptor proteins. Using this database we show here that the guanine and cytosine content of codon third bases (GC3) varies intragenically with the nature of the specified receptor domains (transmembrane > extracellular > intracellular domains; p < 0.001), the phenotype of the encoded amino acids (hydrophobic > hydrophilic > neutral amino acids; p < 0.001), and the receptor affiliation of the transmembrane domain superfamily (G-protein- coupled receptors > receptor tyrosine kinases; p < 0.001). Within gene regions specifying transmembrane domains, GC3 declines as domain functionality becomes redundant with increasing hydrophobicity (p < 0.001). Codons containing the second-base cytosine (XCZ, which encodes neutral amino acids) are selectively depleted of third-base adenine content (A3: XCA codons) when encoding transmembrane domain residues, consistent with positive selection for transitional mutation of XCG to XTG (which encodes hydrophobic amino acids) rather than to the synonymous XCA. Supporting this XCG XTG mechanism of codon bias, the G3:A3 ratio of codons specifying the transmembrane amino acid glycine (GGZ) is intermediate between that of its functional homolog alanine (GCZ) and that of hydrophobic valine (GTZ), even though the C3:T3 ratios are similar. Conversely, nearest-neighbor analysis of third bases 5 to codons specifying valine and leucine (CTZ) confirms a significant difference in C3:T3 but not G3:A3 ratios (i.e., C3/G1 T3/G1 > C3/A1; p < 0.001), consistent with the functionally advantageous retention of hydrophobic residues. These data raise the possibility that patterns of intragenic codon bias reflect a balance between negative and positive selection, suggesting in turn that analysis of codon third-base usage may help to predict the functional significance of encoded products. Supplementary information: Current address: (K. Lin) College of Life Sciences, Beijing Normal University, Beijing 100875, China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号