首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.  相似文献   

2.
Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP–labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 μm/min with a maximum velocity of 24.3 μm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.  相似文献   

3.
mRNA is transported to the dendritic regions by forming RNA granules, an aggregate of mRNA, ribosomal proteins, rRNA, and RNA-binding proteins such as Staufen. In this study, the dendritic transport of RNA granules was measured using the individual antibodies to ribosome-specific markers such as ribosomal L4 or S6 protein, and Y10B, a monoclonal antibody specific to rRNA. All the markers showed significant immunoreactivity in the dendritic regions of the hippocampal neurons. In addition, a GFP-tagged Staufen, a marker protein of the RNA granules, was colocalized with the Y10B and S6 signals in the dendrites. The S6 signals were also colocalized with the Y10B signals in the dendrites. Consistent with previous studies, the depolarization induced by KCl stimulation increased the ribosomal level, revealed by the S6 or Y10B immunostaining in the distal dendrites. These results demonstrate the utility of ribosomal markers for detecting the RNA granules or mRNA transport in dendrites.  相似文献   

4.
5.
An inducible fluorescent system based on GFP is presented that allows for the uncoupling of dendritic mRNA transport from subsequent protein synthesis at the single cell level. The iron-responsive element (IRE) derived from ferritin mRNA in the 5'-UTR of the GFP reporter mRNA renders translation of its mRNA dependent on iron. The addition of the full-length 3'-UTR of the Ca(2+)/calmodulin-dependent protein kinase II alpha (CaMKIIalpha) after the stop codon of the GFP reading frame targets the reporter mRNA to dendrites of transfected fully polarized hippocampal neurons. As we show by time-lapse videomicroscopy, iron specifically turns on GFP reporter protein synthesis in a single transfected hippocampal neuron. We investigate whether GFP expression is affected--in addition to iron--by synaptic activity. Interestingly, synaptic activity has a clear stimulatory effect. Most importantly, however, this activity-dependent protein synthesis is critically dependent on the presence of the full-length 3'-UTR of CaMKIIalpha confirming that this sequence contains translational activation signals. The IRE-based system represents a new convenient tool to study local protein synthesis in mammalian cells where mRNA localization to a specific intracellular compartment occurs.  相似文献   

6.
7.
RNA granules mediate the transport and local translation of their mRNA cargoes, which regulate cellular processes such as stress response and neuronal synaptic plasticity. RNA granules contain specific RNA-binding proteins, including RNA granule protein 105 (RNG105), which is likely to participate in the transport and translation of mRNAs. In the present report, an RNG105 paralog, RNG140 is described. A homolog of RNG105/RNG140 is found in insects, echinoderms, and urochordates, whereas vertebrates have both of the two genes. RNG140 and RNG105 are similar in that both bind to mRNAs and inhibit translation in vitro, induce the formation of RNA granules, are most highly expressed in the brain, and are localized to dendritic RNA granules, part of which are accumulated at postsynapses. However, they differ in several characteristics; RNG105 is highly expressed in embryonic brains, whereas RNG140 is highly expressed in adult brains. Furthermore, the granules where RNG105 or RNG140 is localized are distinct RNA granules in both cultured cells and neuronal dendrites. Thus, RNG140 is an RNA-binding protein that shows different expression and localization patterns from RNG105. Knockdown experiments in cultured neurons also are performed, which demonstrate that suppression of RNG140 or RNG105 reduces dendrite length and spine density. Knockdown effects of RNG140 were not rescued by RNG105, and vise versa, suggesting distinct roles of RNG105 and RNG140. These results suggest that RNG140 has roles in the maintenance of the dendritic structure in the adult vertebrate brain through localizing to a kind of RNA granules that are distinct from RNG105-containing granules.  相似文献   

8.
In neurons, many different RNAs are targeted to dendrites where local expression of the encoded proteins mediates synaptic plasticity during learning and memory. It is not known whether each RNA follows a separate trafficking pathway or whether multiple RNAs are targeted to dendrites by the same pathway. Here, we show that RNAs encoding alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein are coassembled into the same RNA granules and targeted to dendrites by the same cis/trans-determinants (heterogeneous nuclear ribonucleoprotein [hnRNP] A2 response element and hnRNP A2) that mediate dendritic targeting of myelin basic protein RNA by the A2 pathway in oligodendrocytes. Multiplexed dendritic targeting of different RNAs by the same pathway represents a new organizing principle for coordinating gene expression at the synapse.  相似文献   

9.
mRNA transport and local translation in the neuronal dendrite is implicated in the induction of synaptic plasticity. Recently, we cloned an RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1), that is suggested to be important for the stabilization of mRNA. We report here that SYNCRIP is a component of mRNA granules in rat hippocampal neurons. SYNCRIP was mainly found at cell bodies, but punctate expression patterns in the proximal dendrite were also seen. Time-lapse analysis in living neurons revealed that the granules labeled with fluorescent protein-tagged SYNCRIP were transported bi-directionally within the dendrite at approximately 0.05 microm/s. Treatment of neurons with nocodazole significantly inhibited the movement of green fluorescent protein-SYNCRIP-positive granules, indicating that the transport of SYNCRIP-containing granules is dependent on microtubules. The distribution of SYNCRIP-containing granules overlapped with that of dendritic RNAs and elongation factor 1alpha. SYNCRIP was also found to be co-transported with green fluorescent protein-tagged human staufen1 and the 3'-untranslated region of inositol 1,4,5-trisphosphate receptor type 1 mRNA. These results suggest that SYNCRIP is transported within the dendrite as a component of mRNA granules and raise the possibility that mRNA turnover in mRNA granules and the regulation of local protein synthesis in neuronal dendrites may involve SYNCRIP.  相似文献   

10.
Huang YS  Kan MC  Lin CL  Richter JD 《The EMBO journal》2006,25(20):4865-4876
CPEB is a sequence-specific RNA-binding protein that promotes polyadenylation-induced translation in oocytes and neurons. Vertebrates contain three additional genes that encode CPEB-like proteins, all of which are expressed in the brain. Here, we use SELEX, RNA structure probing, and RNA footprinting to show that CPEB and the CPEB-like proteins interact with different RNA sequences and thus constitute different classes of RNA-binding proteins. In transfected neurons, CPEB3 represses the translation of a reporter RNA in tethered function assays; in response to NMDA receptor activation, translation is stimulated. In contrast to CPEB, CPEB3-mediated translation is unlikely to involve cytoplasmic polyadenylation, as it requires neither the cis-acting AAUAAA nor the trans-acting cleavage and polyadenylation specificity factor, both of which are necessary for CPEB-induced polyadenylation. One target of CPEB3-mediated translation is GluR2 mRNA; not only does CPEB3 bind this RNA in vitro and in vivo, but an RNAi knockdown of CPEB3 in neurons results in elevated levels of GluR2 protein. These results indicate that CPEB3 is a sequence-specific translational regulatory protein.  相似文献   

11.
Characterization of an RNA granule from developing brain   总被引:1,自引:0,他引:1  
In brain, mRNAs are transported from the cell body to the processes, allowing for local protein translation at sites distant from the nucleus. Using subcellular fractionation, we isolated a fraction from rat embryonic day 18 brains enriched for structures that resemble amorphous collections of ribosomes. This fraction was enriched for the mRNA encoding beta-actin, an mRNA that is transported in dendrites and axons of developing neurons. Abundant protein components of this fraction, determined by tandem mass spectrometry, include ribosomal proteins, RNA-binding proteins, microtubule-associated proteins (including the motor protein dynein), and several proteins described only as potential open reading frames. The conjunction of RNA-binding proteins, transported mRNA, ribosomal machinery, and transporting motor proteins defines these structures as RNA granules. Expression of a subset of the identified proteins in cultured hippocampal neurons confirmed that proteins identified in the proteomics were present in neurites associated with ribosomes and mRNAs. Moreover many of the expressed proteins co-localized together. Time lapse video microscopy indicated that complexes containing one of these proteins, the DEAD box 3 helicase, migrated in dendrites of hippocampal neurons at the same speed as that reported for RNA granules. Although the speed of the granules was unchanged by activity or the neurotrophin brain-derived neurotrophic factor, brain-derived neurotrophic factor, but not activity, increased the proportion of moving granules. These studies define the isolation and composition of RNA granules expressed in developing brain.  相似文献   

12.
The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system.  相似文献   

13.
14.
15.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.  相似文献   

16.
17.
Activity-dependent local translation of dendritic mRNAs is one process that underlies synaptic plasticity. Here, we demonstrate that several of the factors known to control polyadenylation-induced translation in early vertebrate development [cytoplasmic polyadenylation element-binding protein (CPEB), maskin, poly(A) polymerase, cleavage and polyadenylation specificity factor (CPSF) and Aurora] also reside at synaptic sites of rat hippocampal neurons. The induction of polyadenylation at synapses is mediated by the N-methyl-D-aspartate (NMDA) receptor, which transduces a signal that results in the activation of Aurora kinase. This kinase in turn phosphorylates CPEB, an essential RNA-binding protein, on a critical residue that is necessary for polyadenylation-induced translation. These data demonstrate a remarkable conservation of the regulatory machinery that controls signal-induced mRNA translation, and elucidates an axis connecting the NMDA receptor to localized protein synthesis at synapses.  相似文献   

18.
19.
20.
mRNA localization has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion, and allowing the local control of protein synthesis in neurons. In neuronal dendrites, the localization and translocation of mRNA is considered as one of the molecular bases of synaptic plasticity. Recent imaging and functional studies revealed that several RNA-binding proteins form a large messenger ribonucleoprotein (mRNP) complex that is involved in transport and translation of mRNA in dendrites. However, the mechanism of mRNA translocation into dendritic spines is unknown. Here, we show that an actin-based motor, myosin-Va, plays a significant role in mRNP transport in neuronal dendrites and spines. Myosin-Va was Ca2+-dependently associated with TLS, an RNA-binding protein, and its target RNA Nd1-L, an actin stabilizer. A dominant-negative mutant or RNAi of myosin-Va in neurons suppressed TLS accumulation in spines and further impaired TLS dynamics upon activation of mGluRs. The TLS translocation into spines was impeded also in neurons prepared from myosin-Va-null dilute-lethal (dl) mice, which exhibit neurological defects. Our results demonstrate that myosin-Va facilitates the transport of TLS-containing mRNP complexes in spines and may function in synaptic plasticity through Ca2+ signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号