首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onali P  Olianas MC 《Life sciences》1995,56(11-12):973-980
In membranes of rat olfactory bulb, muscarinic receptor agonists stimulate basal adenylyl cyclase activity . This response is inhibited by a number of muscarinic receptor antagonists with a rank order of potency suggesting the involvement of the M4 muscarinic receptor subtype. The stimulatory effect does not require Ca2+ and occurs independently of activation of phosphoinositide hydrolysis. Pretreatment with pertussis toxin completely prevents the muscarinic stimulation of adenylyl cyclase, indicating the participation of G proteins of the Gi/Go family. Immunological impairment of the G protein, Gs, also reduces the muscarinic response, whereas concomitant activation of Gs-coupled receptors by CRH or VIP results in a synergistic stimulation of adenylyl cyclase activity. Although these data suggest a role for Gs, a body of evidence indicates that the muscarinic receptors do not interact directly with this G protein. Moreover, the Ca2+/calmodulin (Ca2+/CaM)- and forskolin-stimulated enzyme activities are inhibited by muscarinic receptor activation in a pertussis toxin-sensitive manner and with a pharmacological profile similar to that observed for the stimulatory response. These data indicate that in rat olfactory bulb M4 muscarinic receptors exert a bimodal control on cyclic AMP formation through a sequence of events that may involve activation of Gi/Go proteins, synergistic interaction with Gs and differential modulation of Ca2+/CaM-independent and -dependent forms of adenylyl cyclase.  相似文献   

2.
The thyroliberin receptor in GH3 pituitary tumour cells is known to couple to phospholipase C via a guanine-nucleotide-binding protein (G protein). Thyroliberin is postulated also to activate adenylyl cyclase, via the stimulatory G protein (Gs). In order to study this coupling, we constructed an antisense RNA expression vector that contained part of the Gs alpha-subunit cDNA clone (Gs alpha) in an inverted orientation relative to the mouse metallothionein promoter. The cDNA fragment included part of the coding region and all of the 3' non-translated region. Transient expression of Gs alpha antisense RNA in GH3 cells resulted in the specific decrease of Gs alpha mRNA levels, followed by decreased Gs alpha protein levels. Thyroliberin-elicited adenylyl cyclase activation in membrane preparations showed a reduction of up to 85%, whereas phospholipase C stimulation remained unaffected. Activation of adenylyl cyclase by vasoactive intestinal peptide was reduced by 30-40%. Investigation of the effects of thyroliberin and vasoactive intestinal peptide on adenylyl cyclase in GH3 cell membranes pretreated with antisera against Gs alpha and Gi-1 alpha/Gi-2 alpha support the results obtained by the use of the antisense technique. We conclude that thyroliberin has a bifunctional effect on GH3 cells, in activating adenylyl cyclase via Gs or a Gs-like protein in addition to the coupling to phospholipase C.  相似文献   

3.
4.
The hormone-sensitive adenylyl cyclase system is under dual control, receiving both stimulatory and inhibitory inputs. Guanine nucleotide-binding regulatory proteins (G-proteins) transduce signals from cell surface receptors to effectors such as adenylyl cyclase. Hormonal stimulation is propagated via Gs, inhibition by Gi. Persistent (24-h) activation of the stimulatory pathway of adenylyl cyclase by the diterpene forskolin or the beta-adrenergic agonist isoproterenol in S49 mouse lymphoma cells enhanced the effects of somatostatin mediated via the inhibitory pathway of adenylyl cyclase. Stimulating cells with forskolin or isoproterenol for 24 h resulted in a 3-fold increase in the steady-state levels of Gi alpha 2 and a 25% decline in Gs alpha, as quantified by immunoblotting. Within 12 h of stimulation of adenylyl cyclase, Gi alpha 2 mRNA levels increased 4-fold, measured by DNA-excess solution hybridization. Gs alpha mRNA levels, in contrast, increased initially (25%), but then declined to 75% of control. In S49 variants that lack functional protein kinase A (kin-), stimulation by isoproterenol failed to alter Gi alpha 2 expression at either the protein or the mRNA levels. A 3-fold increase in relative synthesis rate and no change in the half-life (approximately 80 h) of Gi alpha 2 was observed in response to forskolin stimulation. Although Gs alpha synthesis increased (70%) modestly in response to forskolin stimulation, the half-life of Gs alpha actually decreased from 55 h in naive cells to 34 h in treated cells. Thus, the two G-protein-mediated pathways controlling adenylyl cyclase display "cross-regulation." Persistent activation of the stimulatory pathway increases Gi alpha 2 mRNA and expression. Transiently elevated Gs alpha mRNA levels are counterbalanced by a reduction in the half-life of the protein.  相似文献   

5.
Activation of CRH receptors type 1 (CRH-R1) by CRH or urocortin (UCN) leads to stimulation of multiple G proteins with consequent effects on diverse signaling cascades in a tissue-specific manner. In human myometrium and human embryonic kidney (HEK)293 cells, binding of UCN to CRH-R1alpha receptors activates both the Gs and Gq, leading to activation of the adenylyl cyclase/protein kinase A (PKA) and the phospholipase C/protein kinase C and ERK1/2 signaling pathways, respectively. The overall result of these signals is often unpredictable, as these two signaling pathways can interact in many cellular systems, with either potentiation or inhibition of ERK1/2 activity. In the present studies we investigated potential signaling interactions after stimulation of CRH-R1alpha receptors in human cultured pregnant myometrial cells or HEK293 cells overexpressing recombinant CRH-R1alpha receptors. We found that the adenylyl cyclase/PKA pathway has the capacity to markedly decrease UCN-induced ERK1/2 activation, and that these effects were due in part to the ability of PKA to phosphorylate the CRH-R1alpha at position Ser(301) in the third intracellular loop. Mutant CRH-R1alpha receptors with substitutions at position Ser(301), which is the only potential PKA phosphorylation site, were resistant to PKA-dependent phosphorylation and showed altered signaling characteristics, which were dependent upon the amino acid substitution at this position.We conclude that Ser(301), which is located in the third intracellular loop of CRH-R1alpha, is critical for efficient coupling of the receptor to G proteins and to second messenger generation. Phosphorylation by PKA prevents maximal coupling of the CRH-R1alpha to Gq-protein, and thereby reduces activation of ERK 1/2.  相似文献   

6.
Opioid receptors are the therapeutic targets of narcotic analgesics. All three types of opioid receptors (mu, delta and kappa) are prototypical G(i)-coupled receptors with common signaling characteristics in their regulation of intracellular events. Nevertheless, numerous signaling processes are differentially regulated by the three receptors. We have recently demonstrated that stimulation of delta-opioid receptor can up-regulate the activity of the c-Jun N-terminal kinase (JNK) in a pertussis toxin-sensitive manner (Kam et al. 2003; J. Neurochem. 84, 503-513). The present study revealed that the mu-opioid receptor could stimulate JNK in both SH-SY5Y cells and transfected COS-7 cells. The mechanism by which the mu-opioid receptor stimulated JNK was delineated with the use of specific inhibitors and dominant-negative mutants of signaling intermediates. Activation of JNK by the mu-opioid receptor was mediated through G beta gamma, Src kinase, son-of-sevenless (Sos), Rac and Cdc42. Interestingly, unlike the delta-opioid receptors, the mu-opioid receptor required phosphatidylinositol-3 kinase (PI3K) to activate JNK. The mu-opioid receptor-induced JNK activation was effectively inhibited by wortmannin or the coexpression of a dominant negative mutant of PI3K gamma. Like the delta-opioid receptor, activation of JNK by the kappa-opioid receptor occurred in a PI3K-independent manner. These studies revealed that the mu-opioid receptor utilize a distinct mechanism to regulate JNK.  相似文献   

7.
S W Bahouth  S Lopez 《Life sciences》1992,51(26):PL271-PL276
Receptor cross-talk is an emerging field which investigates cross-regulation between distinct classes of receptors. In the present work, we investigated the influence of activating the insulin receptor, a tyrosine kinase receptor, on beta-agonist activation of adenylyl cyclase, which is mediated by a G protein-linked receptor. Treatment of SK-N-MC neuroepithelioma cells with insulin generated a marked attenuation of beta 1-adrenergic receptor-mediated stimulation of adenylyl cyclase. This effect required nanomolar concentrations of insulin, occurred within minutes of exposure of these cells to insulin, and did not result from down-regulation of beta-adrenergic receptors. Insulin alone reduced the maximal isoproterenol-mediated stimulation of adenylyl cyclase by 50%, while the co-addition of the phosphatase inhibitor sodium vanadate increased the magnitude of insulin inhibition to 90%. Insulin provides an additional avenue for heterologous desensitization of beta-adrenergic receptors and their transmembranal signalling pathway.  相似文献   

8.
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-alpha receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-alpha in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or G(i) proteins. TNF-alpha caused a significant dose- (1-10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-alpha also increased phosphorylation of Ser(338) on raf-1 kinase, indicative of activation. IL-1beta and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-alpha transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase.  相似文献   

9.
We have localized a G protein activator region of the human beta 2-adrenergic receptor to region beta III-2 (from Arg259 to Lys273). The synthetic beta III-2, corresponding to the C-terminal end of the third cytoplasmic loop, activates Gs at nanomolar concentrations and weakly activates Gi. beta III-2 activates adenylyl cyclase at nanomolar concentrations in wild-type S49 lymphoma membranes, but not in membranes of unc mutant S49 cells, in which Gs is uncoupled from beta-adrenergic stimulation. Phosphorylation of beta III-2 by cAMP-dependent protein kinase A, which is involved in the desensitization of the beta-adrenergic receptor from Gs, drastically reduces the effect of beta III-2 on Gs while potentiating its action on Gi, resulting in a total loss of adenylyl cyclase-stimulating activity. These findings indicate that this receptor sequence is a multipotential G protein activator whose G protein specificity is regulated by protein kinase A.  相似文献   

10.
The pineal neurohormone melatonin modulates a variety of physiological processes through different receptors. It has recently been reported that the cloned melatonin receptors (MT1, MT2 and Mel1c) exhibit differential abilities to stimulate phospholipase C (PLC) via G(16). Here we examined the molecular basis of such differences in melatonin receptor signaling. Coexpression of MT1 or MT2 with the alpha subunit of G(16) (Galpha(16) ) allowed COS-7 cells to accumulate inositol phosphates in response to 2-iodomelatonin. In contrast, Mel1c did not activate Galpha(16) even though its expression was demonstrated by radioligand binding and agonist-induced inhibition of adenylyl cyclase. As Mel1c possesses an exceptionally large C-terminal tail, we further asked if this structural feature prevented productive coupling to Galpha(16). Eleven chimeric melatonin or mutant receptors were constructed by swapping all or part of the C-terminal tail between MT1, MT2 and Mel1c. All chimeras were fully capable of binding 2-[(125) I]iodomelatonin and inhibiting adenylyl cyclase. Chimeras containing the full-length Mel1c tail were incapable of activating Galpha(16), while those that contained the complete C-terminal region of either MT1 or MT2 stimulated PLC. Incorporation of the extra portion of the C-terminal tail of Mel1c to either MT1 or MT2 completely abolished the chimeras' ability to stimulate PLC via Galpha(16). In contrast, truncation of the C-terminal tail of Mel1c allowed interaction with Galpha(16). Our results suggest that Galpha(16) can discern structural differences amid the three melatonin receptors and provide evidence for functional distinction of Mel1c from MT1 and MT2 receptors.  相似文献   

11.
While the cytoskeleton is known to play several roles in the biology of the cell, one role, which has been revealed only recently, is that of a participant in the signal transduction process. Tubulin binds specifically to the alpha subunits of Gs (stimulatory GTP-binding regulatory protein of adenylyl cyclase), Gi1 (inhibitory protein of adenylyl cyclase), and Gq and transactivates those molecules through direct transfer of GTP. The relevance of this transactivation process to G proteins which are normally activated by a neurotransmitter-occupied receptor is the subject of this study. C6 glioma cells, made permeable with saponin, retained tight coupling between Gs and the beta-adrenergic receptor. Although 5-guanylylimidodiphosphate (GppNHp) was incapable of activating Gs (and subsequently, adenylyl cyclase) in the absence of agonist, tubulin with GppNHp bound (tubulin-GppNHp) activated adenylyl cyclase with an EC(50) of 30 nM. Desensitization of beta-adrenergic receptors by isoproterenol exposure had no effect on the ability of tubulin-GppNHp to activate Gs and adenylyl cyclase. When the photoaffinity GTP analog, azidoanilido GTP (AAGTP; P3(4-azidoanilido)-P1-5'-GTP), was added to C6 membranes or permeable C6 cells, it was only weakly incorporated by G alpha s in the absence of isoproterenol. When the same concentration of dimeric tubulin with AAGTP bound was introduced, AAGTP was transferred from tubulin to G alpha s, activating the latter species. Similar 'preferential' activation of G alpha s by tubulin-AAGTP versus the free nucleotide was seen using purified components. Thus, membrane-associated tubulin may serve to activate G alpha s, independent of signals not normally coupled to that protein. Tubulin may act as an agent to link a variety of membrane-associated signalling systems.  相似文献   

12.
The peptide hormone relaxin in dose-dependent manner stimulates adenylyl cyclase activity in the rat tissues (brain striatum, heart and skeletal muscles) and the muscle tissues of invertebrates--bivalve mollusk Anodonta cygnea and earthworm Lumbricus terrestris. Adenylyl cyclase stimulating effect of the hormone is most expressed in striatum and heart muscles of rats. For identification of the type ofrelaxin receptors, participating in the realization of this effect of the hormone, the peptides 619-629, 619-629-Lys(Palm) and 615-629 derived from the primary structure of C-terminal region of the third intracellular loop of the relaxin receptor of type 1 (LGR7), were synthesized by us for the first time. It is shown that peptide: 619-629-Lys(Palm) and 615-629 in competitive manner inhibit the stimulation of the adenylyl cyclase by relaxin in brain striatum and heart muscle of rats. At the same time, these peptides do not change stimulating effect of the hormone in the skeletal muscles of rat and in the muscles of invertebrates. Thus, the peptide action on adenylyl cyclase effect of relaxin is tissue- and species-specific. These data, on the one hand, demonstrate participation of receptor LGR7 in realization of adenylyl cyclase stimulating effect of relaxin in striatum and heart muscle of rats and, on the other, give evidence for existence of another adenylyl cyclase signaling mechanisms of relaxin action in the skeletal muscles and the muscle of invertebrates, which do not involve LGR7 receptor. The adenylyl cyclase stimulating effect of relaxin in striatum and heart muscle was decreased in the presence of C-terminal peptides 385-394 of alpha(s)-subunit of mammalian G protein and was blocked by treatment of the membranes with cholera toxin. On the basis of data obtained the following conclusions were made: (i) in striatum and heart muscle the relaxin stimulates adenylyl cyclase through LGR7 receptors functionally coupled with Gs protein, and (ii) the coupling between hormoneactivated relaxin receptor LGR7 and Gs protein is realized via the interaction of C-terminal part of receptor third intracellular loop and C-terminal segment of Gs protein alpha-subunit.  相似文献   

13.
In a yeast two-hybrid screen of mouse brain cDNA library, using the N-terminal region of human type V adenylyl cyclase (hACV) as bait, we identified G protein beta2 subunit as an interacting partner. Additional yeast two-hybrid assays showed that the Gbeta(1) subunit also interacts with the N-terminal segments of hACV and human type VI adenylyl cyclase (hACVI). In vitro adenylyl cyclase (AC) activity assays using membranes of Sf9 cells expressing hACV or hACVI showed that Gbetagamma subunits enhance the activity of these enzymes provided either Galpha(s) or forskolin is present. Deletion of residues 77-151, but not 1-76, in the N-terminal region of hACVI obliterated the ability of Gbetagamma subunits to conditionally stimulate the enzyme. Likewise, activities of the recombinant, engineered, soluble forms of ACV and ACVI, which lack the N termini, were not enhanced by Gbetagamma subunits. Transfection of the C terminus of G protein receptor kinase 2 to sequester endogenous Gbetagamma subunits attenuated the ability of isoproterenol to increase cAMP accumulation in COS-7 cells overexpressing hACVI even when G(i) was inactivated by pertussis toxin. Therefore, we conclude that the N termini of human hACV and hACVI are necessary for interactions with, and regulation by, Gbetagamma subunits both in vitro and in intact cells. Moreover, Gbetagamma subunits derived from a source(s) other than G(i) are necessary for the full activation of hACVI by isoproterenol in intact cells.  相似文献   

14.
B Kühn  T Gudermann 《Biochemistry》1999,38(38):12490-12498
Binding of lutropin/choriogonadotropin (LH/CG) to its cognate receptor results in the activation of adenylyl cyclase and phospholipase C. This divergent signaling of the LH receptor is based on the independent activation of distinct G protein subfamilies, i.e. , Gs, Gi, and potentially also Gq. To examine the selectivity of LH receptor coupling to phospholipase C beta-activating G proteins, we used an in vivo reconstitution system based on the coexpression of the LH receptor and different G proteins in baculovirus-infected insect cells. In this paper, we describe a refined expression strategy for the LH receptor in insect cells. The receptor protein was inserted into the cell membrane at an expression level of 0.8 pmol/mg of membrane protein. Sf9 cells expressing the LH receptor responded to hCG challenge with a concentration-dependent accumulation of intracellular cAMP (EC50 = 630 nM) but not of inositol phosphates, whereas stimulation of the histamine H1 receptor in Sf9 cells led to increased phospholipase C (PLC) activity. Immunoblotting experiments using G protein-specific antisera revealed the absence of quantitative amounts of alpha i in Sf9 cells, whereas alpha s and alpha q/11 were detected. We therefore attempted to restore the hCG-dependent PLC activation by infection of Sf9 cells with viruses encoding the LH receptor and different G protein alpha subunits. HCG stimulation of cells coexpressing the LH receptor and exogenous alpha i2 resulted in stimulation of PLC activity. In cells coinfected with an alpha i3-baculovirus, hCG challenge led to a minor activation of PLC, whereas no hCG-dependent PLC stimulation was observed in cells coexpressing alpha i1. Most notably, coinfection with baculoviruses encoding alpha q or alpha 11 did not reproduce the PLC activation by the LH receptor. Thus, the murine LH receptor activates adenylyl cyclase via Gs and PLC via selective coupling to Gi2.  相似文献   

15.
The agonist-bound gonadotropin-releasing hormone (GnRH) receptor engages several distinct signaling cascades, and it has recently been proposed that coupling of a single type of receptor to multiple G proteins (G(q), G(s), and G(i)) is responsible for this behavior. GnRH-dependent signaling was studied in gonadotropic alphaT3-1 cells endogenously expressing the murine receptor and in CHO-K1 (CHO#3) and COS-7 cells transfected with the human GnRH receptor cDNA. In all cell systems studied, GnRH-induced phospholipase C activation and Ca(2+) mobilization was pertussis toxin-insensitive, as was GnRH-mediated extracellular signal-regulated kinase activation. Whereas the G(i)-coupled m2 muscarinic receptor interacted with a chimeric G(s) protein (G(s)i5) containing the C-terminal five amino acids of Galpha(i2), the human GnRH receptor was unable to activate the G protein chimera. GnRH challenge of alphaT3-1, CHO#3 and of GnRH receptor-expressing COS-7 cells did not result in agonist-dependent cAMP formation. GnRH challenge of CHO#3 cells expressing a cAMP-responsive element-driven firefly luciferase did not result in increased reporter gene expression. However, coexpression of the human GnRH receptor and adenylyl cyclase I in COS-7 cells led to clearly discernible GnRH-dependent cAMP formation subsequent to GnRH-elicited rises in [Ca(2+)](i). In alphaT3-1 and CHO#3 cell membranes, addition of [alpha-(32)P]GTP azidoanilide resulted in GnRH receptor-dependent labeling of Galpha(q/11) but not of Galpha(i), Galpha(s) or Galpha(12/13) proteins. Thus, the murine and human GnRH receptors exclusively couple to G proteins of the G(q/11) family. Multiple GnRH-dependent signaling pathways are therefore initiated downstream of the receptor/G protein interface and are not indicative of a multiple G protein coupling potential of the GnRH receptor.  相似文献   

16.
It has been shown that melatonin regulates uterine function. Our previous studies have demonstrated the presence of melatonin receptors in the rat uterine endometrium, indicating that melatonin may act directly on the uterus. In the present study, the histological localization of the rat uterine melatonin binding was revealed by autoradiography and the molecular subtyping was studied by in situ hybridization in the stromal cells. The signal transduction process and effects of melatonin on stromal cell proliferation was also investigated. Our autoradiograms showed that 2[(125)I]iodomelatonin binding sites were localized in the antimesometrial endometrial stroma. In situ hybridization with specific mt(1) receptor cDNA probe in the primary culture of antimesometrial stromal cells demonstrated the expression of mt(1) receptor mRNAs. Melatonin dose-dependently inhibited forskolin-stimulated cAMP accumulation, which was reversed by pertussis toxin. This indicates that the rat uterine melatonin receptors are negatively coupled to adenylate cyclase via pertussis toxin sensitive G(i) protein. Melatonin also inhibited the incorporation of [(3)H]thymidine in the rat uterine antimesometrial stromal cells, showing that melatonin has an anti-proliferative effect on the uterus. Our results suggest that melatonin may act directly on the mt(1) melatonin receptors in the rat uterine antimesometrial stromal cells to inhibit their proliferation. Its action may be mediated through a pertussis toxin-sensitive adenylate cyclase coupled G(i)-protein.  相似文献   

17.
Mel 1a melatonin receptors belong to the super-family of guanine nucleotide-binding regulatory protein (G protein)-coupled receptors. So far, interest in Mel 1a receptor signaling has focused mainly on the modulation of the adenylyl cyclase pathway via pertussis toxin (PTX)-sensitive G proteins. To further investigate signaling of the human Mel 1a receptor, we have developed an antibody directed against the C terminus of this receptor. This antibody detected the Mel 1a receptor as a protein with an apparent molecular mass of approximately 60 kDa in immunoblots after separation by SDS-PAGE. It also specifically precipitated the 2-[125I]iodomelatonin (125I-Mel)-labeled receptor from Mel 1a-transfected HEK 293 cells. Coprecipitation experiments showed that G(i2), G(i3), and G(q/11) proteins couple to the Mel 1a receptor in an agonist-dependent and guanine nucleotide-sensitive manner. Coupling was selective since other G proteins present in HEK 293 cells, (G(i1), G(o), G(s), G(z), and G12) were not detected in receptor complexes. Coupling of the Mel 1a receptor to G(i) and G(q) was confirmed by inhibition of high-affinity 125I-Mel binding to receptors with subtype-selective G protein alpha-subunit antibodies. G(i2) and/or G(i3) mediated adenylyl cyclase inhibition while G(q/11) induced a transient elevation in cytosolic calcium concentrations in HEK 293 cells stably expressing Mel 1a receptors. Melatonin-induced cytosolic calcium mobilization via PTX-insensitive G proteins was confirmed in primary cultures of ovine pars tuberalis cells endogenously expressing Mel 1a receptors. In conclusion, we report the development of the first antibody recognizing the cloned human Mel 1a melatonin receptor protein. We show that Mel 1a receptors functionally couple to both PTX-sensitive and PTX-insensitive G proteins. The previously unknown signaling of Mel 1a receptors through G(q/11) widens the spectrum of potential targets for melatonin.  相似文献   

18.
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. In the present study, we describe the utility of a melanophore cell line from Xenopus laevis for exploring structure-activity relationships among novel melatonin analogues and report a novel MT2-selective agonist (IIK7) and MT2-selective receptor antagonist (K185). IIK7 is a potent melatonin receptor agonist in the melanophore model, and in NIH3T3 cells expressing human mt1 and MT2 receptor subtypes. In radioligand binding experiments IIK7 is 90-fold selective for the MT2 subtype. K185 is devoid of agonist activity, but acts as a competitive melatonin antagonist in melanophores. A low concentration (10(-9) M) antagonizes melatonin inhibition of forskolin stimulation of cyclic AMP in NIH3T3 cells expressing human MT2 receptors, but has no effect in cells expressing mt1 receptors. In binding assays, K185 is 140-fold selective for the MT2 subtype.  相似文献   

19.
beta 2-Adrenergic receptors expressed in Sf9 cells activate endogenous Gs and adenylyl cyclase [Mouillac B., Caron M., Bonin H., Dennis M. and Bouvier M. (1992) J. Biol. Chem. 267, 21733-21737]. However, high affinity agonist binding is not detectable under these conditions suggesting an improper stoichiometry between the receptor and the G protein and possibly the effector molecule as well. In this study we demonstrate that when beta 2-adrenergic receptors were co-expressed with various mammalian G protein subunits in Sf9 cells using recombinant baculoviruses signalling properties found in native receptor systems were reconstituted. For example, when beta 2AR was co-expressed with the Gs alpha subunit, maximal receptor-mediated adenylyl cyclase stimulation was greatly enhanced (60 +/- 9.0 versus 150 +/- 52 pmol cAMP/min/mg protein) and high affinity, GppNHp-sensitive, agonist binding was detected. When G beta gamma subunits were co-expressed with Gs alpha and the beta 2AR, receptor-stimulated GTPase activity was also demonstrated, in contrast to when the receptor was expressed alone, and this activity was higher than when beta 2AR was co-expressed with Gs alpha alone. Other properties of the receptor, including receptor desensitization and response to inverse agonists were unaltered. Using antisera against an epitope-tagged beta 2AR, both Gs alpha and beta gamma subunits could be co-immunoprecipitated with the beta 2AR under conditions where subunit dissociation would be expected given current models of G protein function. A desensitization-defective beta 2AR (S261, 262, 345, 346A) and a mutant which is constitutively desensitized (C341G) could also co-immunoprecipitate G protein subunits. These results will be discussed in terms of a revised view of G protein-mediated signalling which may help address issues of specificity in receptor/G protein coupling.  相似文献   

20.
Beta-Adrenoceptor agonists activate a time- and voltage-independent Cl- conductance in mammalian cardiac myocytes. To characterize the cellular signaling pathways underlying its regulation, wide-tipped pipettes fitted with a pipette perfusion device were used to record whole-cell current and to introduce nucleotides to the interior of guinea pig ventricular myocytes. Replacement of pipette GTP with GDP beta S prevented activation of the Cl- conductance by Iso, suggesting a requirement for G protein turnover. With GTP in the pipette, the effect of Iso could be abolished by the beta-adrenoceptor antagonist propranolol, and mimicked by histamine or forskolin. These actions of Iso and forskolin are mediated exclusively via cAMP-dependent protein kinase (PKA), because (a) maximal activation of the Cl- conductance by forskolin or pipette cAMP occluded the effect of Iso, and (b) switching to pipette solution containing a synthetic peptide inhibitor (PKI) of PKA completely abolished the Cl- conductance activated by Iso and prevented the action of forskolin, but had no further effect. These results argue against basal activation of the Cl- conductance, and make it extremely unlikely that the stimulatory G protein, Gs, has any direct, phosphorylation-independent influence. The muscarinic receptor agonists acetylcholine (ACh) and carbachol diminished, in a reversible manner, Cl- conductance activated by Iso or forskolin, but not that elicited by cAMP. The muscarinic inhibition was abolished by replacing pipette GTP with GDP beta S, or by preincubating cells with pertussis toxin (PTX), and was therefore mediated by an inhibitory G protein, presumably Gi, influencing adenylyl cyclase activity. Nonhydrolyzable GTP analogues (GTP gamma S or GppNHp) applied via the pipette did not themselves activate Cl- conductance, but rendered Cl- current activation by brief exposures to Iso or histamine, but not to forskolin, irreversible. The Cl- conductance persistently activated by Iso was insensitive to propranolol or ACh, but could still be abolished by pipette application of PKI. The data indicate that stimulation of beta-adrenergic or histaminergic receptors in the presence of nonhydrolyzable GTP analogues causes persistent activation of Gs and uncouples it from the receptors. We conclude that autonomic regulation of cardiac Cl- conductance reflects accurately the underlying modulation of adenylyl cyclase activity and, hence, that this system is a suitable mammalian model for in situ studies of the interactions between adenylyl cyclase, Gs, Gi, and forskolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号