首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this study, we examined homologous recombination in mammalian cells using a gene targeting assay in which the introduction of a double-strand-break (DSB) in the vector-borne region of homology to the chromosome resulted in targeted vector integration. The vector-borne DSB was flanked with small palindromic insertions that, when encompassed within heteroduplex DNA (hDNA) formed during targeted vector integration, were capable of avoiding the activity of the mismatch repair (MMR) system. When used in conjunction with an isolation procedure in which the product(s) of each targeted vector integration event were retained for molecular analysis, information about recombination mechanisms was obtained. The examination of marker segregation patterns in independent recombinants revealed the following, (i) hDNA tracts could form simultaneously on each side of the DSB and in both participating homologous regions. Clonal analysis of sectored recombinants revealed that, in the homologous repeats generated by the recombination event, vector-borne palindrome and chromosomal markers were linked in the expected way in each strand of the hDNA intermediate, (ii) hDNA tracts were subject to MMR processing that occurred on opposite sides of the DSB, and (iii) in the majority of recombinants, the vector-borne marker was replaced with the corresponding marker from the chromosome. Bidirectional hDNA formation and MMR processing of both sides of the DSB are consistent with the double-strand-break repair (DSBR) model of recombination.  相似文献   

2.
Li J  Baker MD 《Genetics》2000,154(3):1281-1289
We examined mechanisms of mammalian homologous recombination using a gene targeting assay in which the vector-borne region of homology to the chromosome bore small palindrome insertions that frequently escape mismatch repair when encompassed within heteroduplex DNA (hDNA). Our assay permitted the product(s) of each independent recombination event to be recovered for molecular analysis. The results revealed the following: (i) vector-borne double-strand break (DSB) processing usually did not yield a large double-strand gap (DSG); (ii) in 43% of the recombinants, the results were consistent with crossover at or near the DSB; and (iii) in the remaining recombinants, hDNA was an intermediate. The sectored (mixed) genotypes observed in 38% of the recombinants provided direct evidence for involvement of hDNA, while indirect evidence was obtained from the patterns of mismatch repair (MMR). Individual hDNA tracts were either long or short and asymmetric or symmetric on the one side of the DSB examined. Clonal analysis of the sectored recombinants revealed how vector-borne and chromosomal markers were linked in each strand of individual hDNA intermediates. As expected, vector-borne and chromosomal markers usually resided on opposite strands. However, in one recombinant, they were linked on the same strand. The results are discussed with particular reference to the double-strand-break repair (DSBR) model of recombination.  相似文献   

3.
Li J  Baker MD 《Genetics》2000,156(2):809-821
The "ends-out" or omega (Omega)-form gene replacement vector is used routinely to perform targeted genome modification in a variety of species and has the potential to be an effective vehicle for gene therapy. However, in mammalian cells, the frequency of this reaction is low and the mechanism unknown. Understanding molecular features associated with gene replacement is important and may lead to an increase in the efficiency of the process. In this study, we investigated gene replacement in mammalian cells using a powerful assay system that permits efficient recovery of the product(s) of individual recombination events at the haploid, chromosomal mu-delta locus in a murine hybridoma cell line. The results showed that (i) heteroduplex DNA (hDNA) is formed during mammalian gene replacement; (ii) mismatches in hDNA are usually efficiently repaired before DNA replication and cell division; (iii) the gene replacement reaction occurs with fidelity; (iv) the presence of multiple markers in one homologous flanking arm in the replacement vector did not affect the efficiency of gene replacement; and (v) in comparison to a genomic fragment bearing contiguous homology to the chromosomal target, gene targeting was only slightly inhibited by internal heterology (pSV2neo sequences) in the replacement vector.  相似文献   

4.
Y S Weng  J A Nickoloff 《Genetics》1998,148(1):59-70
Double-strand break (DSB) induced gene conversion in Saccharomyces cerevisiae during meiosis and MAT switching is mediated primarily by mismatch repair of heteroduplex DNA (hDNA). We used nontandem ura3 duplications containing palindromic frameshift insertion mutations near an HO nuclease recognition site to test whether mismatch repair also mediates DSB-induced mitotic gene conversion at a non-MAT locus. Palindromic insertions included in hDNA are expected to produce a stem-loop mismatch, escape repair, and segregate to produce a sectored (Ura+/-) colony. If conversion occurs by gap repair, the insertion should be removed on both strands, and converted colonies will not be sectored. For both a 14-bp palindrome, and a 37-bp near-palindrome, approximately 75% of recombinant colonies were sectored, indicating that most DSB-induced mitotic gene conversion involves mismatch repair of hDNA. We also investigated mismatch repair of well-repaired markers flanking an unrepaired palindrome. As seen in previous studies, these additional markers increased loop repair (likely reflecting corepair). Among sectored products, few had additional segregating markers, indicating that the lack of repair at one marker is not associated with inefficient repair at nearby markers. Clear evidence was obtained for low levels of short tract mismatch repair. As seen with full gene conversions, donor alleles in sectored products were not altered. Markers on the same side of the DSB as the palindrome were involved in hDNA less often among sectored products than nonsectored products, but markers on the opposite side of the DSB showed similar hDNA involvement among both product classes. These results can be explained in terms of corepair, and they suggest that mismatch repair on opposite sides of a DSB involves distinct repair tracts.  相似文献   

5.
Ng P  Baker MD 《Genetics》1999,151(3):1127-1141
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism.  相似文献   

6.
Birmingham EC  Lee SA  McCulloch RD  Baker MD 《Genetics》2004,168(3):1539-1555
In yeast, four-stranded, biparental "joint molecules" containing a pair of Holliday junctions are demonstrated intermediates in the repair of meiotic double-strand breaks (DSBs). Genetic and physical evidence suggests that when joint molecules are resolved by the cutting of each of the two Holliday junctions, crossover products result at least most of the time. The double-strand break repair (DSBR) model is currently accepted as a paradigm for acts of DSB repair that lead to crossing over. In this study, a well-defined mammalian gene-targeting assay was used to test predictions that the DSBR model makes about the frequency and position of hDNA in recombinants generated by crossing over. The DSBR model predicts that hDNA will frequently form on opposite sides of the DSB in the two homologous sequences undergoing recombination [half conversion (HC); 5:3, 5:3 segregation]. By examining the segregation patterns of poorly repairable small palindrome genetic markers, we show that this configuration of hDNA is rare. Instead, in a large number of recombinants, full conversion (FC) events in the direction of the unbroken chromosomal sequence (6:2 segregation) were observed on one side of the DSB. A conspicuous fraction of the unidirectional FC events was associated with normal 4:4 marker segregation on the other side of the DSB. In addition, a large number of recombinants displayed evidence of hDNA formation. In several, hDNA was symmetrical on one side of the DSB, suggesting that the two homologous regions undergoing recombination swapped single strands of the same polarity. These data are considered within the context of modified versions of the DSBR model.  相似文献   

7.
Homologous recombination was used in a previous study to correct a 2-base-pair deletion in the third constant domain (Cmu3) of the haploid chromosomal mu gene in a mutant hybridoma cell line by transfer of a pSV2neo vector bearing a subfragment of the normal Cmu region (M.D. Baker, N. Pennell, L. Bosnoyan, and M.J. Shulman, Proc. Natl. Acad. Sci. USA 85:6432-6436, 1988). In these experiments, both gene replacement and single reciprocal crossover events were found to restore normal, cytolytic 2,4,6-trinitrophenyl-specific immunoglobulin M production to the mutant cells. In the cases of single reciprocal recombination, the structure of the recombinant mu gene is such that the normal Cmu region, in its correct position 3' of the expressed 2,4,6-trinitrophenyl-specific heavy-chain variable region, is separated from the mutant Cmu region by the integrated vector sequences. I report here that homologous recombination occurs with high frequency between the duplicate Cmu regions in mitotically growing hybridoma cells. The homologous recombination events were easily detected since they generated hybridomas that were phenotypically different from the parental cells. Analysis of the recombinant cells suggests that gene conversion is the most frequent event, occurring between 60 and 73% of the time. The remaining events consisted of single reciprocal crossovers. Intrachromatid double reciprocal recombination was not detected. The high frequency of recombination, the ability to isolate and analyze the participants in the recombination reactions, and the capacity to generate specific modifications in the immunoglobulin Cmu regions by gene targeting suggest that this system will be useful for studying mammalian chromosomal homologous recombination. Moreover, the ability to specifically modify the chromosomal immunoglobulin genes by homologous recombination should facilitate studies of immunoglobulin gene regulation and expression and provide a more convenient of engineering specifically modified antibody.  相似文献   

8.
Homologous recombination is now routinely used in mammalian cells to replace endogenous chromosomal sequences with transferred DNA. Vectors for this purpose are traditionally constructed so that the replacement segment is flanked on both sides by DNA sequences which are identical to sequences in the chromosomal target gene. To test the importance of bilateral regions of homology, we measured recombination between transferred and chromosomal immunoglobulin genes when the transferred segment was homologous to the chromosomal gene only on the 3' side. In each of the four recombinants analyzed, the 5' junction was unique, suggesting that it was formed by nonhomologous, i.e., random or illegitimate, recombination. In two of the recombinants, the 3' junction was apparently formed by homologous recombination, while in the other two recombinants, the 3' junction as well as the 5' junction might have involved a nonhomologous crossover. As reported previously, we found that the frequency of gene targeting increases monotonically with the length of the region of homology. Our results also indicate that targeting with fragments bearing one-sided homology can be as efficient as with fragments with bilateral homology, provided that the overall length of homology is comparable. The frequency of these events suggests that the immunoglobulin locus is particularly susceptible to nonhomologous recombination. Vectors designed for one-sided homologous recombination might be advantageous for some applications in genetic engineering.  相似文献   

9.
Ectopic recombination occurs between DNA sequences that are not in equivalent positions on homologous chromosomes and has beneficial as well as potentially deleterious consequences for the eukaryotic genome. In the present study, we have examined ectopic recombination in mammalian somatic (murine hybridoma) cells in which a deletion in the mu gene constant (Cmu) region of the endogenous chromosomal immunoglobulin mu gene is corrected by using as a donor an ectopic wild-type Cmu region. Ectopic recombination restores normal immunoglobulin M production in hybridomas. We show that (i) chromosomal mu gene deletions of 600 bp and 4 kb are corrected less efficiently than a deletion of only 2 bp, (ii) the minimum amount of homology required to mediate ectopic recombination is between 1.9 and 4.3 kb, (iii) the frequency of ectopic recombination does not depend on donor copy number, and (iv) the frequency of ectopic recombination in hybridoma lines in which the donor and recipient Cmu regions are physically connected to each other on the same chromosome can be as much as 4 orders of magnitude higher than it is for the same sequences located on homologous or nonhomologous chromosomes. The results are discussed in terms of a model for ectopic recombination in mammalian somatic cells in which the scanning mechanism that is used to locate a homologous partner operates preferentially in cis.  相似文献   

10.
Yang D  Goldsmith EB  Lin Y  Waldman BC  Kaza V  Waldman AS 《Genetics》2006,174(1):135-144
We examined the mechanism by which recombination between imperfectly matched sequences (homeologous recombination) is suppressed in mammalian chromosomes. DNA substrates were constructed, each containing a thymidine kinase (tk) gene disrupted by insertion of an XhoI linker and referred to as a "recipient" gene. Each substrate also contained one of several "donor" tk sequences that could potentially correct the recipient gene via recombination. Each donor sequence either was perfectly homologous to the recipient gene or contained homeologous sequence sharing only 80% identity with the recipient gene. Mouse Ltk(-) fibroblasts were stably transfected with the various substrates and tk(+) segregants produced via intrachromosomal recombination were recovered. We observed exclusion of homeologous sequence from gene conversion tracts when homeologous sequence was positioned adjacent to homologous sequence in the donor but not when homeologous sequence was surrounded by homology in the donor. Our results support a model in which homeologous recombination in mammalian chromosomes is suppressed by a nondestructive dismantling of mismatched heteroduplex DNA (hDNA) intermediates. We suggest that mammalian cells do not dismantle mismatched hDNA by responding to mismatches in hDNA per se but rather rejection of mismatched hDNA appears to be driven by a requirement for localized homology for resolution of recombination.  相似文献   

11.
M D Baker  L R Read  P Ng  B G Beatty 《Genetics》1999,152(2):685-697
In the present study, we investigated intrachromosomal homologous recombination in a murine hybridoma in which the recipient for recombination, the haploid, endogenous chromosomal immunoglobulin mu-gene bearing a mutation in the constant (Cmu) region, was separated from the integrated single copy wild-type donor Cmu region by approximately 1 Mb along the hybridoma chromosome. Homologous recombination between the donor and recipient Cmu region occurred with high frequency, correcting the mutant chromosomal mu-gene in the hybridoma. This enabled recombinant hybridomas to synthesize normal IgM and to be detected as plaque-forming cells (PFC). Characterization of the recombinants revealed that they could be placed into three distinct classes. The generation of the class I recombinants was consistent with a simple unequal sister chromatid exchange (USCE) between the donor and recipient Cmu region, as they contained the three Cmu-bearing fragments expected from this recombination, the original donor Cmu region along with both products of the single reciprocal crossover. However, a simple mechanism of homologous recombination was not sufficient in explaining the more complex Cmu region structures characterizing the class II and class III recombinants. To explain these recombinants, a model is proposed in which unequal pairing between the donor and recipient Cmu regions located on sister chromatids resulted in two crossover events. One crossover resulted in the deletion of sequences from one chromatid forming a DNA circle, which then integrated into the sister chromatid by a second reciprocal crossover.  相似文献   

12.
Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.  相似文献   

13.
Ng P  Baker MD 《Genetics》1999,151(3):1143-1155
Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration.  相似文献   

14.
In mammalian cells, several features of the way homologous recombination occurs between transferred and chromosomal DNA are consistent with the double-strand-break repair (DSBR) model of recombination. In this study, we examined the segregation patterns of small palindrome markers, which frequently escape mismatch repair when encompassed within heteroduplex DNA formed in vivo during mammalian homologous recombination, to test predictions of the DSBR model, in particular as they relate to the mechanism of crossover resolution. According to the canonical DSBR model, crossover between the vector and chromosome results from cleavage of the joint molecule in two alternate sense modes. The two crossover modes lead to different predicted marker configurations in the recombinants, and assuming no bias in the mode of Holliday junction cleavage, the two types of recombinants are expected in equal frequency. However, we propose a revision to the canonical model, as our results suggest that the mode of crossover resolution is biased in favor of cutting the DNA strands upon which DNA synthesis is occurring during formation of the joint molecule. The bias in junction resolution permitted us to examine the potential consequences of mismatch repair acting on the DNA breaks generated by junction cutting. The combination of biased junction resolution with both early and late rounds of mismatch repair can explain the marker patterns in the recombinants.  相似文献   

15.
Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93-101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2(-/-) cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.  相似文献   

16.
Homologous recombination (HR) is important in repairing errors of replication and other forms of DNA damage. In mammalian cells, potential templates include the homologous chromosome, and after DNA replication, the sister chromatid. Previous work has shown that the mammalian recombination machinery is organized to suppress interchromosomal recombination while preserving intrachromosomal HR. In the present study, we investigated spontaneous intrachromosomal HR in mouse hybridoma cell lines in which variously numbered tandem repeats of the µ heavy chain constant (Cµ) region reside at the haploid, chromosomal immunoglobulin µ heavy chain locus. This organization provides the opportunity to investigate recombination between homologous gene repeats in a well-defined chromosomal locus under conditions in which recombinants are conveniently recovered. This system revealed several features about the mammalian intrachromosomal HR process: (i) the frequency of HR was high (recombinants represented as much as several percent of the total of recombinants and non-recombinants); (ii) the recombination process appeared to be predominantly non-reciprocal, consistent with the possibility of gene conversion; (iii) putative gene conversion tracts were long (up to 13.4 kb); (iv) the recombination process occurred with precision, initiating and terminating within regions of shared homology. The results are discussed with respect to mammalian intrachromosomal HR involving interactions both within and between sister chromatids.  相似文献   

17.
We present an intermolecular recombination assay for mammalian cells that does not involve the reconstitution of a selectable marker. It is based on the generation of a shuttle vector by recombination between a bacterial and a mammalian vector. The recombinants can thus be amplified in mammalian cells, isolated by plasmid rescue in an Escherichia coli RecA- host, and identified by in situ hybridization, by using mammalian vector sequences as probes. Since both parental molecules can share defined lengths of homology, this assay permits a direct comparison between homologous and nonhomologous intermolecular recombination. Our results indicate that the dominant intermolecular recombination mechanism is a nonhomologous one. The relative frequency of homologous to nonhomologous recombination was influenced by the length of shared homology between parental molecules and the replicative state of the parental molecules, but not by the introduction of double-strand breaks per se. Finally, almost all of the recombinants with a homologous junction did not have the reciprocal homologous junction but instead had a nonhomologous one. We propose a model to account for the generation of these recombinants.  相似文献   

18.
Homologous recombination accomplishes the exchange of genetic information between two similar or identical DNA duplexes. It can occur either by gene conversion, a process of unidirectional genetic exchange, or by reciprocal crossing over. Homologous recombination is well known for its role in generating genetic diversity in meiosis and, in mitosis, as a DNA repair mechanism. In the immune system, the evidence suggests a role for homologous recombination in Ig gene evolution and in the diversification of Ab function. Previously, we reported the occurrence of homologous recombination between repeated, donor and recipient alleles of the Ig H chain mu gene C (Cmu) region residing at the Ig mu locus in mouse hybridoma cells. In this study, we constructed mouse hybridoma cell lines bearing Cmu region heteroalleles to learn more about the intrachromosomal homologous recombination process. A high frequency of homologous recombination (gene conversion) was observed for markers spanning the entire recipient Cmu region, suggesting that recombination might initiate at random sites within the Cmu region. The Cmu region heteroalleles were equally proficient as either conversion donors or recipients. Remarkably, when the same Cmu heteroalleles were tested for recombination in ectopic genomic positions, the mean frequency of gene conversion was reduced by at least 65-fold. These results are consistent with the murine IgH mu locus behaving as a hot spot for intrachromosomal homologous recombination.  相似文献   

19.
McCulloch RD  Read LR  Baker MD 《Genetics》2003,163(4):1439-1447
Analysis of the crossover products recovered following transformation of mammalian cells with a sequence insertion ("ends-in") gene-targeting vector revealed a novel class of recombinant. In this class of recombinants, a single vector copy has integrated into an ectopic genomic position, leaving the structure of the cognate chromosomal locus unaltered. Thus, in this respect, the recombinants resemble simple cases of random vector integration. However, the important difference is that the two paired 3' vector ends have acquired endogenous, chromosomal sequences flanking both sides of the vector-borne double-strand break (DSB). In some cases, copying was extensive, extending >16 kb into nonhomologous flanking DNA. The results suggest that mammalian homologous recombination events can involve strand invasion and DNA synthesis by both 3' ends of the DSB. These DNA interactions are a central, predicted feature of the DSBR model of recombination.  相似文献   

20.
The construction of mutant fungal strains is often limited by the poor efficiency of homologous recombination in these organisms. Higher recombination efficiencies can be obtained by increasing the length of homologous DNA flanking the transformation marker, although this is a tedious process when standard molecular biology techniques are used for the construction of gene replacement cassettes. Here, we present a two-step technology which takes advantage of an Escherichia coli strain expressing the phage λ Red(gam, bet, exo) functions and involves (i) the construction in this strain of a recombinant cosmid by in vivo recombination between a cosmid carrying a genomic region of interest and a PCR-generated transformation marker flanked by 50 bp regions of homology with the target DNA and (ii) genetic exchange in the fungus itself between the chromosomal locus and the circular or linearized recombinant cosmid. This strategy enables the rapid establishment of mutant strains carrying gene knock-outs with efficiencies >50%. It should also be appropriate for the construction of fungal strains with gene fusions or promoter replacements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号