首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed dispersal and seedling establishment are essential for plant recolonization after disturbances, especially for plants that rely exclusively on sexual reproduction such as post-fire colonizer trees. Fire refugia may play a key role not only allowing trees to survive fire, but also functioning as seed sources after it. The estimation of seed dispersal and seedling establishment are essential for assessing plant recolonization ability, understanding landscape dynamics and determining which areas may not be able to recover due to lack of seed arrival. Here we study the post-fire recolonization ability of Austrocedrus chilensis (Cordilleran Cypress) from fire refugia in burned areas of northwest Patagonia, Argentina. We mapped all female trees, saplings and seedlings within and around fire refugia, recorded the reproductive capacity of female trees and characterized the microsite conditions for establishment. We used an inverse modelling approach and Approximate Bayesian Computation to estimate the seed dispersal kernel and the probability of seedling establishment. We found that the average dispersal distance of an A. chilensis seed was 88.52 m. The dispersal kernel was fat-tailed, meaning that A. chilensis has the capacity of producing accelerating expansions. Large woody debris, litter, and the protection of shrubs were the most important factors associated with the presence of recruits. We highlight the importance of fire refugia as seed sources for the recolonization of burned areas and thus the relevance of protecting these places to allow the persistence of fire-sensitive species.  相似文献   

2.
The significant mortality of the Austrocedrus chilensis (D. Don) Pic. Serm. et Bizarri forests, locally known as “Mal del Ciprés”, has been reported since 1945 for most sites across its distribution in Argentina. However, the cause of this decline is still a topic of discussion. In this study, radial growth patterns from symptomatic and asymptomatic A. chilensis trees were analyzed to determine the influence of drought events on tree growth. Fifty pairs of symptomatic and asymptomatic trees with similar DBH, competition, and microsite conditions were cored at five pure A. chilensis stands near El Bolsón, Río Negro, Argentina. A reference chronology from nonaffected trees was used to cross-date all cores and to determine the relationship between A. chilensis radial growth and climate. The growth of A. chilensis is favored by above average precipitation in late spring–early summer (November and December). A strong relationship was also observed between radial growth patterns and the Palmer drought severity index, a measure of the regional water deficit. Significant differences in growth patterns were recorded between symptomatic and asymptomatic trees. Following extreme drought events, the growth of symptomatic trees is consistently lower than in asymptomatic trees. Based on the larger number of droughts recorded during the past decades and on future climatic predictions suggesting increasing trends in the frequency and intensity of drought events in northern Patagonia, a gradual increase in the number of trees affected by “Mal del Ciprés” along the twenty-first century is likely expected.  相似文献   

3.
4.
Prescribed fire is a critical strategy for mitigating the effects of catastrophic wildfires. While the above-ground response to fire has been well-documented, fewer studies have addressed the effect of prescribed fire on soil microorganisms. To understand how soil microbial communities respond to prescribed fire, we sampled four plots at a high temporal resolution (two burned, two controls), for 17 months, in a mixed conifer forest in northern California, USA. Using amplicon sequencing, we found that prescribed fire significantly altered both fungal and bacterial community structure. We found that most differentially abundant fungal taxa had a positive fold-change, while differentially abundant bacterial taxa generally had a negative fold-change. We tested the null hypothesis that these communities assembled due to neutral processes (i.e., drift and/or dispersal), finding that >90% of taxa fit this neutral prediction. However, a dynamic sub-community composed of burn-associated indicator taxa that were positively differentially abundant was enriched for non-neutral amplicon sequence variants, suggesting assembly via deterministic processes. In synthesizing these results, we identified 15 pyrophilous taxa with a significant and positive response to prescribed burns. Together, these results lay the foundation for building a process-driven understanding of microbial community assembly in the context of the classical disturbance regime of fire.  相似文献   

5.
Enright  Neal J.  Marod  Dokrak  Bennett  Ian  Froend  Raymond H.  Ladd  Philip G. 《Plant Ecology》2022,223(3):297-314
Plant Ecology - A range of hypotheses seek to explain why conifers are infrequent in tropical rainforests. Here, we explore how the conifer, Podocarpus neriifolius, persists at low density in...  相似文献   

6.
Question: We investigated how cattle and European hares, the two most widespread exotic herbivores in Patagonia, affect species composition, life‐form composition and community structure during the first 6 years of vegetation recovery following severe burning of fire‐resistant subalpine forests and fire‐prone tall shrublands. We asked how the effects of introduced herbivores on post‐fire plant community attributes affect flammability of the vegetation. Location: Nahuel Huapi National Park, northwest Patagonia, Argentina Methods: We installed fenced plots to exclude livestock and European hares from severely burned subalpine forests of Nothofagus pumilio and adjacent tall shrublands of N. antarctica. The former is an obligate seed reproducer, whereas the latter and all other woody dominants of the shrubland vigorously resprout after burning. Results: Repeated measures ANOVA of annual measurements over the 2001‐2006 period indicate that cattle and hare exclusion had significant but complex effects on the cover of graminoids, forbs, climber species and woody species in the two burned community types. Significant interactions between the effects of cattle and hares varied by plant life forms between the two communities, which implies that their synergistic effects are community dependent. Conclusions: Following severe fires, the combined effects of cattle and hares inhibit forest recovery and favour transition to shrublands dominated by resprouting woody species. This herbivore‐induced trend in vegetation structure is consistent with the hypothesis that the effects of exotic herbivores at recently burned sites contribute to an increase in the overall flammability of the Patagonian landscape.  相似文献   

7.
ABSTRACT. Influences of annual climatic variation on fire occurrence were examined along a rainfall gradient from temperate rainforest to xeric woodlands in northern Patagonia, Argentina. Fire chronologies were derived from fire scars on trees and related to tree-ring proxy records of climate over the period 1820–1974. Similarly, fire records of four Patagonian national parks for the period 1940–1988 were compared to instrumental weather data. Finally, the influences of broad-scale synoptic weather patterns on fire occurrence in northern Patagonia were explored.
Fire in Nothofagus rainforests is highly dependent on drought during the spring and summer of the same year in which fires occur and is less strongly favoured by drought during the spring of the previous year. The occurrence of fire in dry vegetation types near the steppe ecotone is less dependent on drought because even during years of normal weather fuels are thoroughly desiccated during the dry summer. In xeric Austrocedrus woodlands, fire occurrence and spread are promoted by droughts during the fire season and also appear to be favoured by above-average moisture conditions during the preceding 1 to 2 growing seasons which enhances fuel production. Thus, in the xeric woodlands fire is not simply dependent on drought but is favoured by greater climatic variability over time scales of several years.
Fire activity in northern Patagonia is greatly influenced by the intensity and latitudinal position of the subtropical high pressure cell of the southeast Pacific. Greater fire activity is associated with a more intense and more southerly located high pressure cell which blocks the influx of Pacific moisture into the continent. Although long-term changes in fire occurrence along the rainforest-to-xeric woodland gradient have been greatly influenced by human activities, annual variation in fire frequency and extent is also strongly influenced by annual climatic variation.  相似文献   

8.
  • 1 The economic losses associated with crop damage by invasive pests can be minimized by recognizing their potential impact before they spread into new areas or crops.
  • 2 We experimentally evaluated the preferences of the leaf‐cutting ant Acromyrmex lobicornis (Hymenoptera: Formicidae) for the most common conifer species commercially planted in northern Patagonia, Argentina. The areas of potential forest interest in this region and the geographical range of this ant overlap. We performed field preference tests and monitored the level of ant herbivory on planted conifer seedlings next to nests.
  • 3 Acromyrmex lobicornis preferred some conifer species and avoided foraging on others. Pseudotsuga menziesii and Austrocedrus chilensis were the less preferred species, Pinus ponderosa and Pinus contorta were the most preferred by A. lobicornis.
  • 4 The item mostly selected by ants was young needles from P. contorta. This species was also the pine mostly defoliated. Seedlings without ant‐exclusion showed a mean±SE of 60±5% defoliation during the sampling period. Pinus ponderosa was less defoliated; control seedlings showed a mean±SE of 8.5±1% of leaf damage in the sampling period.
  • 5 The present study shows how the use of simple field tests of leaf‐cutting ant preferences could allow an improved selection of appropriate conifer species for future plantations in areas where leaf‐cutting ants are present.
  相似文献   

9.
Aim To understand how tree growth response to regional drought and temperature varies between tree species, elevations and forest types in a mountain landscape. Location Twenty‐one sites on an elevation gradient of 1500 m on the San Francisco Peaks, northern Arizona, USA. Methods Tree‐ring data for the years 1950–2000 for eight tree species (Abies lasiocarpa var. arizonica (Merriam) Lemm., Picea engelmannii Parry ex Engelm., Pinus aristata Engelm., Pinus edulis Engelm., Pinus flexilis James, Pinus ponderosa Dougl. ex Laws., Pseudotsuga menziesii var. glauca (Beissn.) Franco and Quercus gambelii Nutt.) were used to compare sensitivity of radial growth to regional drought and temperature among co‐occurring species at the same site, and between sites that differed in elevation and species composition. Results For Picea engelmannii, Pinus flexilis, Pinus ponderosa and Pseudotsuga menziesii, trees in drier, low‐elevation stands generally had greater sensitivity of radial growth to regional drought than trees of the same species in wetter, high‐elevation stands. Species low in their elevational range had greater drought sensitivity than co‐occurring species high in their elevational range at the pinyon‐juniper/ponderosa pine forest ecotone, ponderosa pine/mixed conifer forest ecotone and high‐elevation invaded meadows, but not at the mixed conifer/subalpine forest ecotone. Sensitivity of radial growth to regional drought was greater at drier, low‐elevation compared with wetter, high‐elevation forests. Yearly growth was positively correlated with measures of regional water availability at all sites, except high‐elevation invaded meadows where growth was weakly correlated with all climatic factors. Yearly growth in high‐elevation forests up to 3300 m a.s.l. was more strongly correlated with water availability than temperature. Main conclusions Severe regional drought reduced growth of all dominant tree species over a gradient of precipitation and temperature represented by a 1500‐m change in elevation, but response to drought varied between species and stands. Growth was reduced the most in drier, low‐elevation forests and in species growing low in their elevational range in ecotones, and the least for trees that had recently invaded high‐elevation meadows. Constraints on tree growth from drought and high temperature are important for high‐elevation subalpine forests located near the southern‐most range of the dominant species.  相似文献   

10.
11.
Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one emissions scenario (RCP 8.5). We developed metrics of vulnerability to short‐term extreme and prolonged drought based on annual allocation to stem growth and net primary productivity. We calculated fire vulnerability based on changes in simulated future area burned relative to historical area burned. Simulated historical drought vulnerability was medium to high in areas with observations of recent drought‐related mortality. Comparisons of observed and simulated historical area burned indicate simulated future fire vulnerability could be underestimated by 3% in the Sierra Nevada and overestimated by 3% in the Rocky Mountains. Projections show that water‐limited forests in the Rocky Mountains, Southwest, and Great Basin regions will be the most vulnerable to future drought‐related mortality, and vulnerability to future fire will be highest in the Sierra Nevada and portions of the Rocky Mountains. High carbon‐density forests in the Pacific coast and western Cascades regions are projected to be the least vulnerable to either drought or fire. Importantly, differences in climate projections lead to only 1% of the domain with conflicting low and high vulnerability to fire and no area with conflicting drought vulnerability. Our drought vulnerability metrics could be incorporated as probabilistic mortality rates in earth system models, enabling more robust estimates of the feedbacks between the land and atmosphere over the 21st century.  相似文献   

12.
Climate and fire are the key environmental factors that shape the distribution and demography of plant populations in Australia. Because of limited palaeoecological records in this arid continent, however, it is unclear as to which factor impacted vegetation more strongly, and what were the roles of fire regime changes owing to human activity and megafaunal extinction (since ca 50 kya). To address these questions, we analysed historical genetic, demographic and distributional changes in a widespread conifer species complex that paradoxically grows in fire-prone regions, yet is very sensitive to fire. Genetic demographic analysis showed that the arid populations experienced strong bottlenecks, consistent with range contractions during the Last Glacial Maximum (ca 20 kya) predicted by species distribution models. In southern temperate regions, the population sizes were estimated to have been mostly stable, followed by some expansion coinciding with climate amelioration at the end of the last glacial period. By contrast, in the flammable tropical savannahs, where fire risk is the highest, demographic analysis failed to detect significant population bottlenecks. Collectively, these results suggest that the impact of climate change overwhelmed any modifications to fire regimes by Aboriginal landscape burning and megafaunal extinction, a finding that probably also applies to other fire-prone vegetation across Australia.  相似文献   

13.
Severe drought in moist tropical forests provokes large carbon emissions by increasing forest flammability and tree mortality, and by suppressing tree growth. The frequency and severity of drought in the tropics may increase through stronger El Niño Southern Oscillation (ENSO) episodes, global warming, and rainfall inhibition by land use change. However, little is known about the spatial and temporal patterns of drought in moist tropical forests, and the complex relationships between patterns of drought and forest fire regimes, tree mortality, and productivity. We present a simple geographic information system soil water balance model, called RisQue (Risco de Queimada – Fire Risk) for the Amazon basin that we use to conduct an analysis of these patterns for 1996–2001. RisQue features a map of maximum plant‐available soil water (PAWmax) developed using 1565 soil texture profiles and empirical relationships between soil texture and critical soil water parameters. PAW is depleted by monthly evapotranspiration (ET) fields estimated using the Penman–Monteith equation and satellite‐derived radiation inputs and recharged by monthly rain fields estimated from 266 meteorological stations. Modeled PAW to 10 m depth (PAW10 m) was similar to field measurements made in two Amazon forests. During the severe drought of 2001, PAW10 m fell to below 25% of PAWmax in 31% of the region's forests and fell below 50% PAWmax in half of the forests. Field measurements and experimental forest fires indicate that soil moisture depletion below 25% PAWmax corresponds to a reduction in leaf area index of approximately 25%, increasing forest flammability. Hence, approximately one‐third of Amazon forests became susceptible to fire during the 2001 ENSO period. Field measurements also suggest that the ENSO drought of 2001 reduced carbon storage by approximately 0.2 Pg relative to years without severe soil moisture deficits. RisQue is sensitive to spin‐up time, rooting depth, and errors in ET estimates. Improvements in our ability to accurately model soil moisture content of Amazon forests will depend upon better understanding of forest rooting depths, which can extend to beyond 15 m. RisQue provides a tool for early detection of forest fire risk.  相似文献   

14.
Ne'eman  G.  Fotheringham  C.J.  Keeley  J.E. 《Plant Ecology》1999,145(2):235-242
Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1–2 m2 but older patches had thinned to one tree every 3–15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks – facing both a potential `immaturity risk' and a `senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests – thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the `permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.  相似文献   

15.
Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high‐latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol?1) or elevated (EC, 750 μmol mol?1) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat, dark respiration (Rdark), and light respiration (Rlight) rates acclimated to temperature, but not CO2: the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark, so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10–40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm‐grown seedlings by 22–56%. When Rlight was modeled as a constant fraction of Rdark, modeled daily respiratory losses were 11–65% greater than when using measured values of Rlight. Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark.  相似文献   

16.
Replacement of grasslands by forests may result in increased water consumption, and the magnitude of this will depend on stand density. To test this hypotheses and evaluate the impact of pine plantations on hydric resources in Patagonia Argentina, we measured over two seasons (1999–2000 and 2000–2001) and at two densities of ponderosa pine plantations (350 and 500 trees ha?1) the following variables: soil water content, leaf water potential (ψ), individual tree growth, individual sap flow, and response of sap flow density (u) to vapor pressure deficit (VPD). Stand transpiration (T) and whole-plant liquid-phase hydraulic conductance (L) were also estimated. Pre-dawn ψ varied from about –0.5 to –1.0 MPa. No differences were found in midday maximum u (1100–1800 hours) on clear days between the 2 measurement years, throughout each season, or between different densities of plantation. Sapflow density was also not correlated with soil water storage up to 1.4 m soil depth. Sapflow increased until VPD of about 2.3 kPa, and decreased at VPD >4 kPa, describing a hysteresis in the afternoon. Values of L in Patagonian trees were similar to those recalculated from published data for pines of the same height in the USA. Average stand transpiration increased with increased density (2.07 and 3.08 mm day-1 for 350 and 500 pines ha-1, respectively) and size of the trees. We conclude that ponderosa pines in Patagonia Argentina use more water, in a magnitude depending on the density of the trees, than native grasslands. Accordingly, ponderosa pines use deep water to maintain high water potential and transpiration rates even during the dry season.  相似文献   

17.
Population-level variation in the leaf carbon isotope discrimination () values was examined in Encelia farinosa, a common Sonoran Desert shrub. There was approximately a 2 range in values among different plants. These differences in values among neighboring plants were maintained through time, both under conditions when neighbors were present and after neighbors had been removed. Individuals with high values were found to have an accelerated growth rate when these plants were released from competition for water. Individuals with low values were better able to persist through long-term drought. These data suggest possible tradeoffs between conditions favoring high- and low--value plants within a natural population. Given the temporal variability in precipitation between years and spatial variability in microhabitat quality in the Sonoran Desert, variation in values among E. farinosa plants will be maintained within a population.  相似文献   

18.
Summary   Resprouting is a common regenerative strategy in plant taxa that occurs in fire and drought-prone environments. When plants are forced to use bud resources in quick succession as a result of repeated disturbances, recovery vigour may be diminished. The loss of bud resources through the combined effect of successive fire and drought is likely to be more damaging for plant survival and persistence than one or other disturbance on its own. In this study, we examine the resprouting response of seven trees and two shrubs after fire and drought in woodland communities in the New England and Bioregion of New South Wales. We also investigate whether there is a cumulative impact on plant vitality as a result of the combined disturbances of fire followed by drought. Preliminary results suggest that resprouting after drought occurs from buds located on the same morphological parts of tree and shrub species as after fire, although the response reflects the intensity of impact. Mortality in nine species affected by drought was similar to that in plants affected by both fire and drought. Since a drought between successive fires has the potential to deplete bud resources and debilitate plants, drought should be taken into account when determining fire regimes, and a severe drought between two fires should be considered in a similar way to an unplanned burn. Failure to do so may lead to reduced vigour and excessive mortality in resprouting species after planned fire.  相似文献   

19.
Question: This study evaluates how fire regimes influence stand structure and dynamics in old‐growth mixed conifer forests across a range of environmental settings. Location: A 2000‐ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 ‐ 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9–17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号