首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
CbpA, one of the Escherichia coli DnaJ homologues, acts as a co-chaperone in the DnaK chaperone system. Despite its extensive similarity in domain structure and function to DnaJ, CbpA has a unique and specific regulatory mechanism mediated through the small protein CbpM. Both CbpA and CbpM are highly conserved in bacteria. Earlier studies showed that CbpM interacts with the N-terminal J-domain of CbpA inhibiting its co-chaperone activity but the structural basis of this interaction is not known. Here, we have combined NMR spectroscopy, site-directed mutagenesis and surface plasmon resonance to characterize the CbpA/CbpM interaction at the molecular level. We have determined the solution structure of the CbpA J-domain and mapped the residues that are perturbed upon CbpM binding. The NMR data defined a broad region on helices α2 and α3 as involved in the interactions. Site-directed mutagenesis has been used to further delineate the CbpA J-domain/CbpM interface. We show that the binding sites of CbpM and DnaK on CbpA J-domain overlap, which suggests a competition between DnaK and CbpM for binding to CbpA as a mechanism for CbpA regulation. This study also provides the explanation for the specificity of CbpM for CbpA versus DnaJ, by identifying the key residues for differential binding.  相似文献   

2.
The DnaK chaperone system, consisting of DnaK, DnaJ, and GrpE, remodels and refolds proteins during both normal growth and stress conditions. CbpA, one of several DnaJ analogs in Escherichia coli, is known to function as a multicopy suppressor for dnaJ mutations and to bind nonspecifically to DNA and preferentially to curved DNA. We found that CbpA functions as a DnaJ-like co-chaperone in vitro. CbpA acted in an ATP-dependent reaction with DnaK and GrpE to remodel inactive dimers of plasmid P1 RepA into monomers active in P1 DNA binding. Additionally, CbpA participated with DnaK in an ATP-dependent reaction to prevent aggregation of denatured rhodanese. The cbpA gene is in an operon with an open reading frame, yccD, which encodes a protein that has some homology to DafA of Thermus thermophilus. DafA is a protein required for the assembly of ring-like particles that contain trimers each of T. thermophilus DnaK, DnaJ, and DafA. The E. coli YccD was isolated because of its potential functional relationship to CbpA. Purified YccD specifically inhibited both the co-chaperone activity and the DNA binding activity of CbpA, suggesting that YccD modulates the activity of CbpA. We named the product of the yccD gene CbpM for "CbpA modulator."  相似文献   

3.
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.  相似文献   

4.
Gur E  Katz C  Ron EZ 《FEBS letters》2005,579(9):1935-1939
DnaJ, DjlA and CbpA are the J-domain proteins of DnaK, the major Hsp70 of Escherichia coli. CbpA was originally discovered as a DNA binding protein. Here, we show that DNA binding is a property of DnaJ and DjlA as well. Of special interest in this respect is DjlA, as this cytoplasmic protein is membrane bound and, as shown here, its affinity for DNA is extremely high. The finding that all the three J-proteins of DnaK are DNA binding proteins sheds new light on the cellular activity of these proteins.  相似文献   

5.
6.
Landry SJ 《Biochemistry》2003,42(17):4926-4936
The molecular chaperone machine composed of Escherichia coli Hsp70/DnaK and Hsp40/DnaJ binds and releases client proteins in cycles of ATP-dependent protein folding, membrane translocation, disassembly, and degradation. The J-domain of DnaJ simultaneously stimulates ATP hydrolysis in the ATPase domain and capture of the client protein in the peptide-binding domain of DnaK. ATP-dependent binding of DnaJ to DnaK mimics DnaJ-dependent capture of a client protein. The dnaJ mutation that replaces aspartate-35 with asparagine (D35N) in the J-domain causes a defect in binding of DnaJ to DnaK. The dnaK mutation that replaces arginine-167 with alanine (R167A) in the ATPase domain of DnaK(R167A) restores binding of DnaJ(D35N). This genetic interaction was said to be allele-specific because wild-type DnaJ does not bind to DnaK(R167A). The J-domain of DnaJ binds to the ATPase domain of DnaK in its capacity as modulator of DnaK ATPase activity and conformational behavior. Surprisingly, the mutations affect the domainwise interaction in an almost opposite manner. D35N increases the affinity of the J-domain for the ATPase domain. R167A has no affect on the affinity of the ATPase domain for the D35N mutant J-domain, but it reduces the affinity for the wild-type J-domain. Previous amide ((1)H, (15)N) NMR chemical shift perturbation mapping in the J-domain suggested that the ATPase domain binds to J-domain helix II and the flanking loops. In the D35N mutant J-domain, chemical shift perturbations include additional effects at amides in the flexible loop II-III and helix III, which have been proposed to undergo an induced fit conformational change upon binding to DnaK. The integrated magnitudes of chemical shift perturbations for the various J-domain and ATPase domain pairs correlate with the free energies of binding. Thus, the J-domain structure can be described as a dynamic ensemble of conformations that is constrained by binding to the ATPase domain. J-domain helix II bends upon binding to the ATPase domain. D35N increases helix II bending, but less so in combination with R167A in the ATPase domain. Taken together, the results suggest that D35N overstabilizes an induced fit conformational change in loop II-III and helix III that is necessary for the J-domain to couple ATP hydrolysis with a conformational change in DnaK, and R167A destabilizes the induced conformation. Conclusions from this work have implications for understanding mechanisms of protein-protein interaction that are involved in allosteric regulation and genetic suppression.  相似文献   

7.
CbpA, an Escherichia coli DnaJ homolog, can function as a cochaperone for the DnaK/Hsp70 chaperone system, and its in vitro activity can be modulated by CbpM. We discovered that CbpM specifically inhibits the in vivo activity of CbpA, preventing it from functioning in cell growth and division. Furthermore, we have shown that CbpM interacts with CbpA in vivo during stationary phase, suggesting that the inhibition of activity is a result of the interaction. These results reveal that the activity of the E. coli DnaK system can be regulated in vivo by a specific inhibitor.  相似文献   

8.
The DnaJ (Hsp40) protein of Escherichia coli serves as a cochaperone of DnaK (Hsp70), whose activity is involved in protein folding, protein targeting for degradation, and rescue of proteins from aggregates. Two other E. coli proteins, CbpA and DjlA, which exhibit homology with DnaJ, are known to interact with DnaK and to stimulate its chaperone activity. Although it has been shown that in dnaJ mutants both CbpA and DjlA are essential for growth at temperatures above 37 degrees C, their in vivo role is poorly understood. Here we show that in a dnaJ mutant both CbpA and DjlA are required for efficient protein dissaggregation at 42 degrees C.  相似文献   

9.
Hsp70 chaperones assist protein folding through ATP-regulated transient association with substrates. Substrate binding by Hsp70 is controlled by DnaJ co-chaperones which stimulate Hsp70 to hydrolyze ATP and, consequently, to close its substrate binding cavity allowing trapping of substrates. We analyzed the interaction of the Escherichia coli Hsp70 homologue, DnaK, with DnaJ using surface plasmon resonance (SPR) spectroscopy. Resonance signals of complex kinetic characteristics were detected when DnaK was passed over a sensor chip with coupled DnaJ. This interaction was specific as it was not detected with a functionally defective DnaJ mutant protein, DnaJ259, that carries a mutation in the HPD signature motif of the conserved J-domain. Detectable DnaK-DnaJ interaction required ATP hydrolysis by DnaK and was competitively inhibited by chaperone substrates of DnaK. For DnaK mutant proteins with amino acid substitutions in the substrate binding cavity that affect substrate binding, the strength of detected interaction with DnaJ decreased proportionally with increased strength of the substrate binding defects. These findings indicate that the detected response signals resulted from DnaJ and ATP hydrolysis-dependent association of DnaJ as substrate for DnaK. Although not considered as physiologically relevant, this association allowed us to experimentally unravel the mechanism of DnaJ action. Accordingly, DnaJ stimulates ATP hydrolysis only after association of a substrate with the substrate binding cavity of DnaK. Further analysis revealed that this coupling mechanism required the J-domain of DnaJ and was also functional for natural DnaK substrates, and thus is central to the mechanism of action of the DnaK chaperone system.  相似文献   

10.
The Escherichia coli Hsp40 DnaJ uses its J-domain to target substrate polypeptides for binding to the Hsp70 DnaK, but the mechanism of J-domain function has been obscured by a substrate-like interaction between DnaJ and DnaK. ATP hydrolysis in DnaK is associated with a conformational change that captures the substrate, and both DnaJ and substrate can stimulate ATP hydrolysis. However, substrates cannot trigger capture by DnaK in the presence of ATP, and substrates stimulate a DnaK conformational change that is uncoupled from ATP hydrolysis. The role of the J-domain was examined using the fluorescent derivative of a fusion protein composed of the J-domain and a DnaK-binding peptide. In the absence of ATP, DnaK-binding affinity of the fusion protein is similar to that of the unfused peptide. However, in the presence of ATP, the affinity of the fusion protein is dramatically increased, which is opposite to the decrease in DnaK affinity typically exhibited by peptides. Binding of a fusion protein that contains a defective J-domain is insensitive to ATP. According to results from isothermal titration calorimetry, the J-domain binds to the DnaK ATPase domain with weak affinity (K(D) = 23 microM at 20 degrees C). The interaction is characterized by a positive enthalpy, small heat capacity change (DeltaC(p)= -33 kcal mol(-1)), and increasing binding affinity for increasing temperatures in the physiological range. In conditions that support binding of the J-domain to the ATPase domain, the J-domain accelerates ATP hydrolysis and a simultaneous conformational change in DnaK that is associated with peptide capture. The defective J-domain is inactive, despite the fact that it binds to the DnaK ATPase domain with higher than wild-type affinity. The results are most consistent with an allosteric mechanism of J-domain action in which the J-domain couples ATP hydrolysis to peptide capture by accelerating ATP hydrolysis and delaying DnaK closure until ATP is hydrolyzed.  相似文献   

11.
DnaK, the Hsp70 chaperone of Escherichia coli interacts with protein substrates in an ATP-dependent manner, in conjunction with DnaJ and GrpE co-chaperones, to carry out protein folding, protein remodeling, and assembly and disassembly of multisubunit protein complexes. To understand how DnaJ targets specific proteins for recognition by the DnaK chaperone system, we investigated the interaction of DnaJ and DnaK with a known natural substrate, bacteriophage P1 RepA protein. By characterizing RepA deletion derivatives, we found that DnaJ interacts with a region of RepA located between amino acids 180 and 200 of the 286-amino acid protein. A peptide corresponding to amino acids 180-195 inhibited the interaction of RepA and DnaJ. Two site-directed RepA mutants with alanine substitutions in this region were about 4-fold less efficiently activated for oriP1 DNA binding by DnaJ and DnaK than wild type RepA. We also identified by deletion analysis a site in RepA, in the region of amino acids 35-49, which interacts with DnaK. An alanine substitution mutant in amino acids 36-39 was constructed and found defective in activation by DnaJ and DnaK. Taken together the results suggest that DnaJ and DnaK interact with separate sites on RepA.  相似文献   

12.
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.  相似文献   

13.
Hsp40-like co-chaperones are ubiquitous enzymes that stimulate the protein refolding activity of Hsp70 family chaperones. They are widespread in prokaryotic and eukaryotic systems. In bacteria, the best characterized co-chaperone is the Escherichia coli DnaJ protein. Many γ-proteobacteria encode a functional homologue of DnaJ, known as CbpA, which is expressed in response to starvation and environmental stress. The activity of CbpA is regulated by the “modulator” protein CbpM. Here, we have used a combination of genetics and biochemistry to identify the co-chaperone contact determinant of CbpM. We show that the nature of the interaction is conserved in enterobacteria.  相似文献   

14.
15.
All type I DnaJ (Hsp40) homologues share the presence of two highly conserved zinc centers. To elucidate their function, we constructed DnaJ mutants that separately replaced cysteines of either zinc center I or zinc center II with serine residues. We found that in the absence of zinc center I, the autonomous, DnaK-independent chaperone activity of DnaJ is dramatically reduced. Surprisingly, this only slightly impaired the in vivo function of DnaJ, and its ability to function as a co-chaperone in the DnaK/DnaJ/GrpE foldase machine. The DnaJ zinc center II, on the other hand, was found to be absolutely essential for the in vivo and in vitro function of DnaJ. This did not seem to be caused by a lack of substrate binding affinity or an inability to work as an ATPase-stimulating factor. Rather it appears that zinc center II mutant proteins lack a necessary additional interaction site with DnaK, which seems to be crucial for locking-in substrate proteins onto DnaK. These findings led us to a model in which ATP hydrolysis in DnaK is only the first step in converting DnaK into its high affinity binding state. Additional interactions between DnaK and DnaJ are required to make the DnaK/DnaJ/GrpE foldase machinery catalytically active.  相似文献   

16.
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor.  相似文献   

17.
The Escherichia coli Hsp40 DnaJ uses its J-domain (Jd) to couple ATP hydrolysis and client protein capture in Hsp70 DnaK. Fusion of the Jd to peptide p5 (as in Jdp5) dramatically increases the apparent affinity of the p5 moiety for DnaK in the presence of ATP, and Jdp5 stimulates ATP hydrolysis in DnaK by several orders of magnitude. NMR experiments with [15N]Jdp5 demonstrated that the peptide tethers the Jd to the ATPase domain. Thus, ATP hydrolysis and client protein binding in DnaK are coupled principally through the association of the client with DnaJ. Overexpression of a recombinant Jd was specifically toxic to cells that simultaneously expressed DnaK. No toxicity was observed when overexpressing Jdp5 or mutant Jd or when co-overexpressing the Jd and the nucleotide exchange factor GrpE. The results suggest that the Jd shifts DnaK to a client-bound form by stimulating the DnaK ATPase but only when the Jd is brought to DnaK by a client-Hsp40 complex.  相似文献   

18.
DjlA is a 30-kDa type III membrane protein of Escherichia coli with the majority, including an extreme C-terminal putative J-domain, oriented toward the cytoplasm. No other regions of sequence similarity aside from the J-domain exist between DjlA and the known DnaK (Hsp70) co-chaperones DnaJ (Hsp40) and CbpA. In this study, we explored whether and to what extent DjlA possesses DnaK co-chaperone activity and under what conditions a DjlA-DnaK interaction could be important to the cell. We found that the DjlA J-domain can substitute fully for the J-domain of DnaJ using various in vivo functional complementation assays. In addition, the purified cytoplasmic fragment of DjlA was shown to be capable of stimulating DnaK ATPase in a manner indistinguishable from DnaJ, and, furthermore, DjlA could act as a DnaK co-chaperone in the reactivation of chemically denatured luciferase in vitro. DjlA expression in the cell is tightly controlled, and even its mild overexpression leads to induction of mucoid capsule. Previous analysis showed that DjlA-mediated induction of the wca capsule operon required the RcsC/RcsB two-component signaling system and that wca induction by DjlA was lost when cells contained mutations in either the dnaK or grpE gene. We now show using allele-specific genetic suppression analysis that DjlA must interact with DnaK for DjlA-mediated stimulation of capsule synthesis. Collectively, these results demonstrate that DjlA is a co-chaperone for DnaK and that this chaperone-co-chaperone pair is implicated directly, or indirectly, in the regulation of colanic acid capsule.  相似文献   

19.
The DnaJ (Hsp40) cochaperone regulates the DnaK (Hsp70) chaperone by accelerating ATP hydrolysis in a cycle closely linked to substrate binding and release. The J-domain, the signature motif of the Hsp40 family, orchestrates interaction with the DnaK ATPase domain. We studied the J-domain by creating 42 mutant E. coli DnaJ variants and examining their phenotypes in various separate in vivo assays, namely, bacterial growth at low and high temperatures, motility, and propagation of bacteriophage lambda. Most mutants studied behaved like wild type in all assays. In addition to the (33)HisProAsp(35) (HPD) tripeptide found in all known functional J-domains, our study uncovered three new single substitution mutations (Y25A, K26A, and F47A) that totally abolish J-domain function. Furthermore, two glycine substitution mutants in an exposed flexible loop (R36G, N37G) showed partial loss of J-domain function alone and complete loss of function as a triple (RNQ-GGG) mutant coupled with the phenotypically silent Q38G. Interestingly, all the essential residues map to a small region on the same solvent-exposed face of the J-domain. Engineered mutations in the corresponding residues of the human Hdj1 J-domain grafted in E. coli DnaJ also resulted in loss of function, suggesting an evolutionarily conserved interaction surface. We propose that these clustered residues impart critical sequence determinants necessary for J-domain catalytic activity and reversible contact interface with the DnaK ATPase domain.  相似文献   

20.
Archaea are prokaryotes but some of their chaperoning systems resemble those of eukaryotes. Also, not all archaea possess the stress protein Hsp70(DnaK), in contrast with bacteria and eukaryotes, which possess it without any known exception. Further, the primary structure of the archaeal DnaK resembles more the bacterial than the eukaryotic homologues. The work reported here addresses two questions: Is the archaeal Hsp70 protein a chaperone, like its homologues in the other two phylogenetic domains? And, if so, is the chaperoning mechanism of bacterial or eukaryotic type? The data have shown that the DnaK protein of the archaeon Methanosarcina mazei functions efficiently as a chaperone in luciferase renaturation in vitro, and that it requires DnaJ, and the other bacterial-type chaperone, GrpE, to perform its function. The M. mazei DnaK chaperone activity was enhanced by interaction with the bacterial co-chaperone DnaJ, but not by the eukaryotic homologue HDJ-2. Both the bacterial GrpE and DnaJ stimulated the ATPase activity of the M. mazei DnaK. The M. mazei DnaK-dependent chaperoning pathway in vitro is similar to that of the bacterium Escherichia coli used for comparison. However, in vivo analyses indicate that there are also significant differences. The M. mazei dnaJ and grpE genes rescued E.coli mutants lacking these genes, but E.coli dnaK mutants were not complemented by the M. mazei dnaK gene. Thus, while the data from in vitro tests demonstrate functional similarities between the M. mazei and E.coli DnaK proteins, in vivo results indicate that, intracellularly, the chaperones from the two species differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号