首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pole cells and posterior segmentation in Drosophila are specified by maternally encoded genes whose products accumulate at the posterior pole of the oocyte. Among these genes is tudor (tud). Progeny of hypomorphic tud mothers lack pole cells and have variable posterior patterning defects. We have isolated a null allele to further investigate tud function. While no pole cells are ever observed in embryos from tud-null mothers, 15% of these embryos have normal posterior patterning. OSKAR (OSK) and VASA (VAS) proteins, and nanos (nos) RNA, all initially localize to the pole plasm of tud-null oocytes and embryos from tud-null mothers, while localization of germ cell-less (gcl) and polar granule component (pgc), is undetectable or severely reduced. In embryos from tud-null mothers, polar granules are greatly reduced in number, size, and electron density. Thus, tud is dispensable for somatic patterning, but essential for pole cell specification and polar granule formation.  相似文献   

2.
Localization of nanos RNA controls embryonic polarity.   总被引:29,自引:0,他引:29  
E R Gavis  R Lehmann 《Cell》1992,71(2):301-313
Anterior-posterior polarity of the Drosophila embryo is initiated during oogenesis through differential maternal RNA localization. The RNA of the anterior morphogen bicoid is localized to the anterior pole of the embryo, where bicoid protein controls head and thorax development. The RNA of the posterior morphogen nanos is localized to the posterior pole, where nanos protein is required for abdomen formation. Here we show that the nanos 3' untranslated region, like that of the bicoid RNA, is sufficient for RNA localization. We have used the bicoid RNA localization signal to mislocalize nanos, producing embryos with two sources of nanos protein. Such embryos form two abdomens with mirror image symmetry. Embryos with nanos RNA localized only to the anterior have greater nanos gene activity than embryos with nanos RNA localized posteriorly. We propose a role for RNA localization in regulating nanos activity.  相似文献   

3.
Embryos derived from oskar females lack pole cells and the specialized pole plasm including polar granules. In addition, the abdominal region remains unsegmented and eventually dies. Transplantation of cytoplasm from normal embryos into mutant embryos reveals that osk-dependent activity is strictly localized at the posterior pole and has three distinct functions. In mutant embryos the activity will normalize pole cell formation when transplanted into the posterior pole and abdominal segmentation after transplantation to a more anterior, the prospective abdominal, region. Furthermore, osk activity can provoke the formation of a second "posterior center" at the anterior. The participation of the osk product in the establishment of a source of morphogenetic activity in the posterior pole plasm is discussed.  相似文献   

4.
The segmental plan of the Drosophila embryo is already established at the blastoderm stage through the action of maternal effect genes which determine the polarity of the embryo and zygotically active genes involved in segmentation. We have analyzed the first example of a group of maternally acting genes which are necessary for establishing the developmental potential of the posterior 25% of the blastoderm. Females, homozygous for the X-linked maternal-effect mutation female sterile(1)Nasrat211 [fs(1)N211], produce embryos, characterized as torso-like, which lack all posterior endodermal derivatives as well as structures characteristic of abdominal segments 8 to 10. In addition, anterior endodermal derivatives are deficient and the absence of pharyngeal musculature causes a collapse of the cephalopharyngeal apparatus. The columnar blastoderm cell layer is defective at the posterior tip below the pole cells in these embryos. This defect, however, is presumably secondary to some abnormal feature of pole cell formation since in double mutants of fs(1)Nasrat211; tudor3 the blastoderm is normal but the embryos still show the torso-like phenotype. In situ hybridization with RNA probes derived from the fushi tarazu gene establishes that the cellular determination of the posterior blastoderm of embryos produced by fs(1)N211 is changed. This represents the first direct demonstration that a maternal-effect mutation alters the spatial distribution of a zygotic gene product involved in the segmental patterning of the embryo.  相似文献   

5.
6.
The development of a functional germline is essential for species propagation. The nanos (nos) gene plays an evolutionarily conserved role in germline development and is also essential for abdominal patterning in Drosophila. A small fraction of nos mRNA is localized to the germ plasm at the posterior pole of the Drosophila embryo, where it becomes incorporated into the germ cells. Germ plasm associated nos mRNA is translated to produce a gradient of Nos protein that patterns the abdomen, whereas the remaining unlocalized RNA is translationally repressed to allow anterior development. Using transgenes that compromise nos mRNA localization and translational regulation, we show that wild-type body patterning can ensue without nos mRNA localization provided that nos translation is properly modulated. In contrast, localization of nos to the germ plasm, but not translational regulation, is essential for nos function in the developing germ cells. We propose that an imperative for nos localization in producing a functional germline has preserved an inefficient localization mechanism.  相似文献   

7.
Staufen, a gene required to localize maternal RNAs in the Drosophila egg.   总被引:25,自引:0,他引:25  
The posterior group gene staufen is required both for the localization of maternal determinants to the posterior pole of the Drosophila egg and for bicoid RNA to localize correctly to the anterior pole. We report the cloning and sequencing of staufen and show that staufen protein is one of the first molecules to localize to the posterior pole of the oocyte, perhaps in association with oskar RNA. Once localized, staufen is found in the polar granules and is required to hold other polar granule components at the posterior pole. By the time the egg is laid, staufen protein is also concentrated at the anterior pole, in the same region as bicoid RNA.  相似文献   

8.
Oskar is one of seven Drosophila maternal-effect genes that are necessary for germline and abdomen formation. We have cloned oskar and show that oskar RNA is localized to the posterior pole of the oocyte when germ plasm forms. This polar distribution of oskar RNA is established during oogenesis in three phases: accumulation in the oocyte, transport toward the posterior, and finally maintenance at the posterior pole of the oocyte. The colocalization of oskar and nanos in wild-type and bicaudal embryos suggests that oskar directs localization of the posterior determinant nanos. We propose that the pole plasm is assembled stepwise and that continued interaction among its components is required for germ cell determination.  相似文献   

9.
10.
Drosophila segmentation is governed by a well-defined gene regulation network. The evolution of this network was investigated by examining the expression profiles of a complete set of segmentation genes in the early embryos of the mosquito, Anopheles gambiae. There are numerous differences in the expression profiles as compared with Drosophila. The germline determinant Oskar is expressed in both the anterior and posterior poles of Anopheles embryos but is strictly localized within the posterior plasm of Drosophila. The gap genes hunchback and giant display inverted patterns of expression in posterior regions of Anopheles embryos, while tailless exhibits an expanded pattern as compared with Drosophila. These observations suggest that the segmentation network has undergone considerable evolutionary change in the dipterans and that similar patterns of pair-rule gene expression can be obtained with different combinations of gap repressors. We discuss the evolution of separate stripe enhancers in the eve loci of different dipterans.  相似文献   

11.
In Drosophila, formation of the germline progenitors, the pole cells, is induced by polar plasm localized in the posterior pole region of early embryos. The polar plasm contains polar granules, which act as a repository for the factors required for pole cell formation. It has been postulated that the factors are stored as mRNA and are later translated on polysomes attached to the surface of polar granules. Here, the identification of mitochondrial small ribosomal RNA (mtsrRNA) as a new component of polar granules is described. The mtsrRNA was enriched in the polar plasm of the embryos immediately after oviposition and remained in the polar plasm throughout the cleavage stage until pole cell formation. In situ hybridization at an ultrastructural level revealed that mtsrRNA was enriched on the surface of polar granules in cleavage embryos. Furthermore, the localization of mtsrRNA in the polar plasm depended on the normal function of oskar, vasa and tudor genes, which are all required for pole cell formation. The temporal and spatial distribution of mtsrRNA is essentially identical to that of mitochondrial large ribosomal RNA (mtlrRNA), which has been shown to be required for pole cell formation. Taken together, it is speculated that mtsrRNA and mtlrRNA are part of the translation machinery localized to polar granules, which is essential for pole cell formation.  相似文献   

12.
Summary The distinction between soma and germline is an important process in the development of animals with sexual reproduction. It is regulated by a number of germline-specific genes, most of which appear conserved in evolution and therefore can be used to study the formation of the germline in diverged animal groups. Here we report the isolation of two orthologs of one such gene, nanos (nos), in the cnidarian Podocoryne carnea, a species with representative zoological features among the hydrozoans. By studying nos gene expression throughout the Podocoryne biphasic life cycle, we find that the germline differentiates exclusively during medusa development, whereas the polyp does not contribute to the process. An early widespread nos expression in developing medusae progressively refines into a mainly germline-specific pattern at terminal stages of medusa formation. Thus, the distinction between germline and soma is a late event in hydrozoan development. Also, we show that the formation of the medusa is a de novo process that relies on active local cell proliferation and differentiation of novel cell and tissue types not present in the polyp, including nos-expressing cells. Finally, we find nos expression at the posterior pole of Podocoryne developing embryos, not related to germline formation. This second aspect of nos expression is also found in Drosophila, where nos functions as a posterior determinant essential for the formation of the fly abdomen. This raises the possibility that nos embryonic expression could play a role in establishing axial polarity in cnidarians.  相似文献   

13.
mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the posterior pole, whereas giant mRNA is localized to the anterior pole of the oocyte; orthodenticle1 (otd1) is localized to both the anterior and posterior poles. The abundance of differentially localized mRNAs during Nasonia oogenesis provided a unique opportunity to study the different mechanisms involved in mRNA localization. Through pharmacological disruption of the microtubule network, we found that both anterior otd1 and giant, as well as posterior caudal mRNA localization was microtubule-dependent. Conversely, posterior otd1 and nanos mRNA localized correctly to the posterior upon microtubule disruption. However, actin is important in anchoring these two posteriorly localized mRNAs to the oosome, the structure containing the pole plasm. Moreover, we find that knocking down the functions of the genes tudor and Bicaudal-D mimics disruption of microtubules, suggesting that tudor's function in Nasonia is different from flies, where it is involved in formation of the pole plasm.  相似文献   

14.
15.
16.
Drosophila encodes five muscle and one cytoskeletal isoform of the actin-binding protein tropomyosin. We have identified a lack-of-function mutation in the cytoskeletal isoform (cTmII). Zygotic mutant embryos show a defect in head morphogenesis, while embryos lacking maternal cTmII are defective in germ cell formation but otherwise give rise to viable adults. oskar mRNA, which is required for both germ cell formation and abdominal segmentation, fails to accumulate at the posterior pole in these embryos. nanos mRNA, however, which is required exclusively for abdominal segmentation, is localized at wild-type levels. These results indicate that head morphogenesis and the accumulation of high levels of oskar mRNA necessary for germ cell formation require tropomyosin-dependent cytoskeleton.  相似文献   

17.
Abdominal patterning in Drosophila requires the function of Nanos (nos) and Pumilio (pum) to repress posterior translation of hunchback mRNA. Here we provide the first functional analysis of nanos and pumilio genes during blastodermal patterning of a short-germ insect. We found that nos and pum in the red flour beetle Tribolium castaneum crucially contribute to posterior segmentation by preventing hunchback translation. While this function seems to be conserved among insects, we provide evidence that Nos and Pum may also act on giant expression, another gap gene. After depletion of nos and pum by parental RNAi, Hunchback and giant remain ectopically at the posterior blastoderm and the posterior Krüppel (Kr) domain is not being activated. giant may be a direct target of Nanos and Pumilio in Tribolium and presumably prevents early Kr expression. In the absence of Kr, the majority of secondary gap gene domains fail to be activated, and abdominal segmentation is terminated prematurely. Surprisingly, we found Nos and Pum also to be involved in early head patterning, as the loss of Nos and Pum results in deletions and transformations of gnathal and pre-gnathal anlagen. Since the targets of Nos and Pum in head development remain to be identified, we propose that anterior patterning in Tribolium may involve additional maternal factors.  相似文献   

18.
In insects, there are two different modes of segmentation. In the higher dipteran insects (like Drosophila), their segmentation takes place almost simultaneously in the syncytial blastoderm. By contrast, in the orthopteran insects (like Schistocerca (grasshopper)), the anterior segments form almost simultaneously in the cellular blastoderm and then the remaining posterior part elongates to form segments sequentially from the posterior proliferative zone. Although most of their orthologues of the Drosophila segmentation genes may be involved in their segmentation, little is known about their roles. We have investigated segmentation processes of Gryllus bimaculatus, focusing on its orthologues of the Drosophila segment-polarity genes, G. bimaculatus wingless (Gbwg), armadillo (Gbarm) and hedgehog (Gbhh). Gbhh and Gbwg were observed to be expressed in the each anterior segment and the posterior proliferative zone. In order to know their roles, we used RNA interference (RNAi). We could not observed any significant effects of RNAi for Gbwg and Gbhh on segmentation, probably due to functional replacement by another member of the corresponding gene families. Embryos obtained by RNAi for Gbarm exhibited abnormal anterior segments and lack of the abdomen. Our results suggest that GbWg/GbArm signaling is involved in the posterior sequential segmentation in the G. bimaculatus embryos, while Gbwg, Gbarm and Gbhh are likely to act as the segment-polarity genes in the anterior segmentation similarly as in Drosophila.  相似文献   

19.
Maternal expression of the l(1)pole hole (l(1)ph) gene product is required for the development of the Drosophila embryo. When maternal l(1)ph+ activity is absent, alterations in the embryonic fate map occur as visualized by the expression of segmentation genes fushitarazu and engrailed. If both maternal and zygotic activity is absent, embryos degenerate around 7 h of development. If only maternal activity is missing, embryos complete embryogenesis and show deletions of both anterior and posterior structures. Anteriorly, structures originating from labral and acron head regions are missing. Posteriorly, abdominal segments A8, 9 and 10, the telson and the proctodeum are missing. Similar pattern deletions are observed in embryos derived from the terminal class of female sterile mutations. Thus, the maternal l(1)ph+ gene product is required for the establishment of cell identities at the anterior and posterior poles of the Drosophila embryo.  相似文献   

20.
Segmentation is well understood in Drosophila, where all segments are determined at the blastoderm stage. In the flour beetle Tribolium castaneum, as in most insects, the posterior segments are added at later stages from a posteriorly located growth zone, suggesting that formation of these segments may rely on a different mechanism. Nevertheless, the expression and function of many segmentation genes seem conserved between Tribolium and Drosophila. We have cloned the Tribolium ortholog of the abdominal gap gene giant. As in Drosophila, Tribolium giant is expressed in two primary domains, one each in the head and trunk. Although the position of the anterior domain is conserved, the posterior domain is located at least four segments anterior to that of Drosophila. Knockdown phenotypes generated with morpholino oligonucleotides, as well as embryonic and parental RNA interference, indicate that giant is required for segment formation and identity also in Tribolium. In giant-depleted embryos, the maxillary and labial segment primordia are normally formed but assume thoracic identity. The segmentation process is disrupted only in postgnathal metamers. Unlike Drosophila, segmentation defects are not restricted to a limited domain but extend to all thoracic and abdominal segments, many of which are specified long after giant expression has ceased. These data show that giant in Tribolium does not function as in Drosophila, and suggest that posterior gap genes underwent major regulatory and functional changes during the evolution from short to long germ embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号