首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A real-time automated method was developed for simultaneous measurements of phototactic orientation (phototaxis) and step-up photophobic response of flagellated microorganisms. Addition of all-trans retinal restored both photoresponses in a carotenoid-deficient mutant strain of Chlamydomonas reinhardtii in a dose-dependent manner. The phototactic orientation was biphasic with respect to both the light intensity and the concentration of retinal. All-trans retinal was more effective than 11-cis retinal to regenerate both photobehavioral responses. Analogs having locked 11-cis configurations and a phenyl ring in the side chain also induced photoresponses, although at concentrations more than two orders of magnitude higher than all-trans retinal. According to the present assay method, the responses were hardly detectable in cells incubated with retinal analogs in which the 13-ene was locked in either its trans or cis configuration. The results strongly suggest that the isomerization of the 13-14 double bond is important for photobehavioral signal transduction and that a single retinal-dependent photoreceptor controls both phototactic and photophobic responses.  相似文献   

2.
An analogue of all-trans retinal in which all-trans/13-cis isomerization is blocked by a carbon bridge from C12 to C14 was incorporated into the apoproteins of sensory rhodopsin I (SR-I) and sensory rhodopsin II (SR-II, also called phoborhodopsin) in retinal-deficient Halobacterium halobium membranes. The "all-trans-locked" retinal analogue forms SR-I and SR-II analogue pigments with similar absorption spectra as the native pigments. Blocking isomerization prevents the formation of the long-lived intermediate of the SR-I photocycle (S373) and those of the SR-II photocycle (S-II360 and S-II530). A computerized cell tracking and motion analysis system capable of detecting 2% of native pigment activity was used for assessing motility behavior. Introduction of the locked analogue into SR-I or SR-II apoprotein in vivo did not restore phototactic responses through any of the three known photosensory systems (SR-I attractant, SR-I repellent, or SR-II repellent). We conclude that unlike the phototaxis receptor of Chlamydomonas reinhardtii, which has been reported to mediate physiological responses without specific double-bond isomerization of its retinal chromophore (Foster et al., 1989), all-trans/13-cis isomerization is essential for SR-I and SR-II phototaxis signaling.  相似文献   

3.
Nonbleachable rhodopsins containing retinal moieties with fixed 11-ene structures have been prepared. When the nonbleachable rhodopsin analogue corresponding to the natural pigment was flash-photolysed at 20.8 degrees C, no absorption changes occurred at the monitoring wavelengths of 380, 480, and 580 nm for the time range of 2 microseconds--10 s. This observation is in contrast to that of natural rhodopsin which showed the formation of metarhodopsin I and its decay to meta II. Irradiation of the artificial rhodopsin, 77 K, with light of 460 and 540 nm, also gave no spectral changes; in the case of natural rhodopsin, however, the irradiation leads to formation of the red-shifted intermediate bathorhodopsin. The absence of photochemistry in the artificial pigment shows that an 11-cis to trans photoisomerization of the retinal moiety is a crucial step in inducing the chain of events in te photolysis of rhodopsin.  相似文献   

4.
A comparative study on the chromophore (retinal) binding sites of the opsin (R-photopsin) from chicken red-sensitive cone visual pigment (iodopsin) and that scotopsin) from bovine rod pigment (rhodopsin) was made by the aid of geometric isomers of retinal (all-trans, 13-cis, 11-cis, 9-cis, and 7-cis) and retinal analogues including fluorinated (14-F, 12-F, 10-F, and 8-F) and methylated (12-methyl) 11-cis-retinals. The stereoselectivity of R-photopsin for the retinal isomers and analogues was almost identical with that of scotopsin, indicating that the shapes of the chromophore binding sites of both opsins are similar, although the former appears to be somewhat more restricted than the latter. The rates of pigment formation from R-photopsin were considerably greater than those from scotopsin. In addition, all the iodopsin isomers and analogues were more susceptible to hydroxylamine than were the rhodopsin ones. These observations suggest that the retinal binding site of iodopsin is located near the protein surface. On the basis of the spectral properties of fluorinated analogues, a polar group in the chromophore binding site of iodopsin as well as rhodopsin was estimated to be located near the hydrogen atom at the C10 position of the retinylidene chromophore. A large difference in wavelength between the absorption maxima of iodopsin and rhodopsin was significantly reduced in the 9-cis and 7-cis pigments. On the assumption that the retinylidene chromophore is anchored rigidly at the alpha-carbon of the lysine residue and loosely at the cyclohexenyl ring, each of the two isomers would have the Schiff-base nitrogen at a position altered from that of the 11-cis pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Artificial bovine rhodopsin pigments derived from synthetic retinal analogues carrying electron-withdrawing substituents (fluorine and chlorine) were prepared. The effects of the electron withdrawing substituents on the pKa values of the pigments and on the corresponding Schiff bases in solution were analyzed. The data suggest that the apparent pKa of the protonated Schiff base is above 16. However, the alternative possibility that the retinal Schiff base linkage in bovine rhodopsin is not accessible for titration from the aqueous bulk medium cannot be definitely ruled out.  相似文献   

6.
Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.  相似文献   

7.
Photoattractant response was measured in a relatively carotenoid-poor strain derived from the mutant of Halobacteriumhalobium that lacks both bacteriorhodopsin and halorhodopsin (strain Flx3). No photoattractant response was observed in the cells at logarithmic growth stage, coinciding with the fact that there was no sensory rhodopsin in membrane fraction prepared from the cells in logarithmic growth stage as measured by flash photholysis experiment. When all-trans-retinal was added to the cell suspension or the membrane suspension, the phototactic activity or the photocycling due to sensory rhodopsin appeared rapidly. This indicates that apoprotein of sensory rhodopsin had been formed in the cells at the growth stage, and suggests that the photoattractant response was mediated by sensory rhodopsin. The action spectrum of the photoattractant response resembled sensory rhodopsin absorption at wavelengths than 600 nm, but was distorted at shorter wavelengths by the photorepellent system that was found recently.  相似文献   

8.
R N Frank  S M Buzney 《Biochemistry》1975,14(23):5110-5117
Partial separation of protein kinase activity from rhodopsin in isolated bovine retinal photoreceptor outer segments was accomplished by mild ultrasonic treatment followed by ultracentrifugation. Residual kinase activity in the rhodopsin-rich sediment was destroyed by chemical denaturation which did not affect the spectral properties of the rhodopsin. The retinal outer segment kinase was found to be specific for rhodopsin, since in these preparations it alone of several bovine protein kinases was capable of phosphorylating rhodopsin in the light. The phosphorylation reaction apparently requires a specific conformation of the rhodopsin molecule since it is abolished by heat denaturation of rhodopsin, and it is greatly reduced or abolished by treatment of the visual pigment protein with potassium alum after the rhodopsin has been "bleached" by light. When kinase and rhodopsin or opsin fractions were prepared from dark-adapted and bleached outer segments and the resultant fractions were mixed in various combinations of bleached and unbleached preparations, the observed pattern of light-activated phosphorylation was consistent only with the interpretation that a conformational change in the rhodopsin molecule in the light exposes a site on the visual pigment protein to the kinase and ATP. These results rule out the possibility of a direct or indirect (rhodopsin-mediated) light activation of the kinase. Finally, phosphorylation of retinal outer segment protein in monochromatic lights of various wavelengths followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that both rhodopsin and the higher molecular weight visual pigment protein reported by several laboratories have the same action spectrum for phosphorylation. This result is consistent with the suggestion that the higher molecular weight species is a rhodopsin dimer.  相似文献   

9.
Electron-electron double resonance (ELDOR) has been applied to the study of specific interactions of 15N-spin-labeled stearic acid with the retinal chromophore of a rhodopsin analogue containing a 14N spin-labeled retinal. Both the 5 and 16 spin-labeled stearic acids were incorporated into the lipid bilayer of rod outer segment membranes containing the spin-labeled pigment. No interaction between the 15N and 14N spin-labels was observed in rhodopsin or the metarhodopsin II state with either of these labeled stearic acids. Therefore in this system the ring portion of the chromophore must be highly sequestered from the phospholipid bilayer in both the rhodopsin and metarhodopsin II forms.  相似文献   

10.
Activation of guanosine 3',5'-cyclic monophosphate (cGMP) phosphodiesterase (EC 3.1.4.35.) in frog rod outer segment membrane by rhodopsin and its analogues was investigated. The Schiff-base linkage between opsin and retinal in rhodopsin was not always necessary for the phosphodiesterase activation. The binding of beta-ionone ring of retinal to a hydrophobic region of opsin was not enough to induce the enzyme activation. A striking photo-activation of the enzyme was induced by photo-isomerization of rhodopsin analogues from cis to trans form. It seems probable that an "expanded" conformation of opsin around the retinylidene chromophore induced by the cis to trans isomerization may be the trigger for the activation of phosphodiesterase. On the other hand, the phosphodiesterase in frog rod outer segment was activated by warming of bathorhodopsin to -12 degrees C and then incubating it at the same temperature. Thus, metarhodopsin II or an earlier intermediate than metarhodopsin II should be a direct intermediate for the enzyme activation.  相似文献   

11.
In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.  相似文献   

12.
Rhodopsin kinase was purified by sequential chromatography on DEAE-cellulose and blue-Sepharose. Kinase activity co-purified with a 62-kDa polypeptide, which bound light-dependently in the absence of ATP to purified vesicle-reconstituted rhodopsin. Purified rhodopsin kinase is free of any detectable arrestin or the retinal G-protein. Rhodopsin kinase is autophosphorylated on serine residues which is unaffected by the presence of bleached rhodopsin and results in a transition in molecular mass to 64 kDa. Autophosphorylation of the kinase did not appear to alter the overall rate of rhodopsin phosphorylation or the apparent KM (0.6 microM) for purified reconstituted rhodopsin. Peptides corresponding to sequences within opsin loops 3-4 and 5-6 and the COOH terminus inhibited kinase phosphorylation of bleached rhodopsin, suggesting at least three potential sites to account for the stable high affinity binding of rhodopsin kinase to the bleached photoreceptor molecule that are at least in part distinct from the substrate sites for phosphorylation. These sequences are similar to those proposed for receptor recognition of G-proteins and indicate that the domains involved in light-dependent binding of rhodopsin kinase and retinal G-protein are similar or overlapping.  相似文献   

13.
Fourier-transform infrared difference spectroscopy has been used to detect the vibrational modes in the chromophore and protein that change in position or intensity between rhodopsin and the photoproducts formed at low temperature (70 K), bathorhodopsin and isorhodopsin. A method has been developed to obtain infrared difference spectra between rhodopsin and bathorhodopsin, bathorhodopsin and isorhodopsin, and rhodopsin and isorhodopsin. To aid in the identification of the vibrational modes, we performed experiments on deuterated and hydrated films of native rod outer segments and rod outer segments regenerated with either retinal containing 13C at carbon 15 or 15-deuterioretinal. Our infrared measurements provide independent verification of the resonance Raman result that the retinal in bathorhodopsin is distorted all-trans. The positions of the C = N stretch in the deuterated pigment and the deuterated pigments regenerated with 11-cis-15-deuterioretinal or 11-cis-retinal containing 13C at carbon 15 are indicative that the Schiff-base linkage is protonated in rhodopsin, bathorhodopsin, and isorhodopsin. Furthermore, the C = N stretching frequency occurs at the same position in all three species. The data indicate that the protonated Schiff base has a C = N trans conformation in all three species. Finally, we present evidence that, even in these early stages of the rhodopsin photosequence, changes are occurring in the opsin and perhaps the associated lipids.  相似文献   

14.
AIM: To investigate the interaction of reconstituted rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin with transducin, rhodopsin kinase and arrestin-1. METHODS: Rod outer segments(ROS) were isolated from bovine retinas. Following bleaching of ROS membranes with hydroxylamine, rhodopsin and rhodopsin analogues were generated with the different retinal isomers and the concentration of the reconstituted pigments was calculated from their UV/visible absorption spectra. Transducin and arrestin-1 were purified to homogeneity by column chromatography, and an enriched-fraction of rhodopsin kinase was obtainedby extracting freshly prepared ROS in the dark. The guanine nucleotide binding activity of transducin was determined by Millipore filtration using β,γ-imido-(3H)-guanosine 5'-triphosphate. Recognition of the reconstituted pigments by rhodopsin kinase was determined by autoradiography following incubation of ROS membranes containing the various regenerated pigments with partially purified rhodopsin kinase in the presence of(γ-32P) ATP. Binding of arrestin-1 to the various pigments in ROS membranes was determined by a sedimentation assay analyzed by sodium dodecyl sulphatepolyacrylamide gel electrophoresis. RESULTS: Reconstituted rhodopsin and rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal rendered an absorption spectrum showing a maximum peak at 498 nm, 486 nm and about 467 nm, respectively, in the dark; which was shifted to 380 nm, 404 nm and about 425 nm, respectively, after illumination. The percentage of reconstitution of rhodopsin and the rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal was estimated to be 88%, 81% and 24%, respectively. Although only residual activation of transducin was observed in the dark when reconstituted rhodopsin and 9-cis-retinal-rhodopsin was used, the rhodopsin analogue containing the 13-cis isomer of retinal was capable of activating transducin independently of light. Moreover, only a basal amount of the reconstituted rhodopsin and 9-cis-retinal-rhodopsin was phosphorylated by rhodopsin kinase in the dark, whereas the pigment containing the 13-cis-retinal was highly phosphorylated by rhodopsin kinase even in the dark. In addition, arrestin-1 was incubated with rhodopsin, 9-cis-retinal-rhodopsin or 13-cis-retinal-rhodopsin. Experiments were performed using both phosphorylated and non-phosphorylated regenerated pigments. Basal amounts of arrestin-1 interacted with rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin under dark and light conditions. Residual arrestin-1 was also recognized by the phosphorylated rhodopsin and phosphorylated 9-cis-retinal-rhodopsin in the dark. However, arrestin-1 was recognized by phosphorylated 13-cis-retinal-rhodopsin in the dark. As expected, all reformed pigments were capable of activating transducin and being phosphorylated by rhodopsin kinase in a lightdependent manner. Additionally, all reconstituted photolyzed and phosphorylated pigments were capable of interacting with arrestin-1. CONCLUSION: In the dark, the rhodopsin analogue containing the 13-cis isomer of retinal appears to fold in a pseudo-active conformation that mimics the active photointermediate of rhodopsin.  相似文献   

15.
Anabaena sensory rhodopsin is a seven transmembrane protein that uses all-trans/13-cis retinal as a chromophore. About 22 residues in the retinal-binding pocket of microbial rhodopsins are conserved and important to control the quality of absorbing light and the function of ion transport or sensory transduction. The absorption maximum is 550 nm in the presence of all-trans retinal at dark. Here, we mutated Pro206 to Glu or Asp, of which the residue is conserved as Asp among all other microbial rhodopsins, and the absorption maximum and pKa of the proton acceptor group were measured by absorption spectroscopy at various pHs. Anabaena rhodopsin was expressed best in Escherichia coli in the absence of extra leader sequence when exogenous all-trans retinal was added. The wild-type Anabaena rhodopsin showed small absorption maximum changes between pH 4 and 11. In addition, Pro206Asp showed 46 nm blue-shift at pH 7.0. Pro206Glu or Asp may change the contribution to the electron distribution of the retinal that is involved in the major role of color tuning for this pigment. The critical residue Ser86 (Asp 96 position in bacteriorhodopsin: proton donor) for the pumping activity was replaced with Asp, but it did not change the proton pumping activity of Anabaena rhodopsin.  相似文献   

16.
Synthetic pigment analogues of the purple membrane protein.   总被引:1,自引:0,他引:1       下载免费PDF全文
Nonphysiological analogues of retinal have been shown to form pigments in reactions with the apoprotein of the purple membrane of Halobacterium halobium. Both the all-trans and 13-cis isomers of a retinal analogue, having an elongated chain with an extra double bond, formed pigments. Unlike the native all-trans and 13-cis retinal1-based pigments, the new pigments were not interconvertible with each other and were unstable against hydroxylamine. When incorporated into phospholipid vesicles, they showed no proton pumping activity upon illumination. The ability of the extended-length retinal to form pigments contrasts with its nonreactivity with opsin (apoprotein of rhodopsin), suggesting a less stringent binding site for the purple membrane chromophore. All-trans retinal2 also combined with bleached purple membrane to form a blue pigment absorbing at ca. 590 nm. Like the native purple membrane, the blu membrane showed proton pumping activity upon illumination in phospholipid vesicles.  相似文献   

17.
Dark adaptation requires timely deactivation of phototransduction and efficient regeneration of visual pigment. No previous study has directly compared the kinetics of dark adaptation with rates of the various chemical reactions that influence it. To accomplish this, we developed a novel rapid-quench/mass spectrometry-based method to establish the initial kinetics and site specificity of light-stimulated rhodopsin phosphorylation in mouse retinas. We also measured phosphorylation and dephosphorylation, regeneration of rhodopsin, and reduction of all-trans retinal all under identical in vivo conditions. Dark adaptation was monitored by electroretinography. We found that rhodopsin is multiply phosphorylated and then dephosphorylated in an ordered fashion following exposure to light. Initially during dark adaptation, transduction activity wanes as multiple phosphates accumulate. Thereafter, full recovery of photosensitivity coincides with regeneration and dephosphorylation of rhodopsin.  相似文献   

18.
Development and Regulation of Rhodopsin Kinase in Rat Pineal and Retina   总被引:4,自引:2,他引:2  
Rhodopsin kinase, once thought to be a retinal enzyme, was recently found at high levels in the pineal gland. In the present study the developmental pattern and the regulation by environmental lighting of this enzyme in both tissues was studied in the rat. Enzyme activity was present in the neonatal pineal gland several days earlier than in the retina, and increased gradually up to 20 days of age and remained at that level thereafter; the retinal enzyme appeared to increase until day 60. Pineal and retinal rhodopsin kinase activities showed a 25% increase in in the middle of the dark and the beginning of the light period, respectively. Exposure to constant light caused a 50% decrease in rhodopsin kinase levels in both tissues. However, only pineal rhodopsin kinase activity declined followed bilateral superior cervical ganglionectomy. This indicates pineal rhodopsin kinase activity is similar to other pineal enzymes in that it is controlled by light acting through the sympathetic nervous system. In contrast, the light-induced decrease in retinal rhodopsin kinase may be due to the direct destructive effect of light on the retina. The finding of neural control of pineal rhodopsin kinase in the pineal gland of adult rats is consistent with a function of the enzyme in the neural regulation of pineal function.  相似文献   

19.
Rhodopsin is the visual pigment of rod cells and a prototypical G protein-coupled receptor. It is activated by cis-->trans photoisomerization of the covalently bound chromophore 11-cis-retinal, which acts in the cis configuration as an inverse agonist. Light-induced formation of the full agonist all-trans-retinal in situ triggers conformational changes in the protein moiety. Partial agonists of rhodopsin include a retinal analog lacking the methyl group at C-9, termed 9-demethyl-retinal (9-dm-retinal). Rhodopsin reconstituted with this retinal (9-dm-rhodopsin) activates G protein poorly. Here we investigated the molecular nature of the partial agonism in 9-dm-rhodopsin using site-directed spin labeling. Earlier site-directed spin labeling studies of rhodopsin identified a rigid-body tilt of the cytoplasmic segment of [corrected] transmembrane helix 6 (TM6) by approximately 6A as a central event in rhodopsin activation. Data presented here provide additional evidence for this mechanism. Only a small fraction of photoexcited 9-dm pigments reaches the TM6-tilted conformation. This fraction can be increased by increasing proton concentration or [corrected] by anticipation of the activating protonation step by the mutation E134Q in 9-dm-rhodopsin. These results on protein conformation are in complete accord with previous findings regarding the biological activity of the 9-dm pigments. When the proton concentration is further increased, a new state arises in 9-dm pigments that is linked to direct proton uptake at the retinal Schiff base. This state apparently has a conformation distinguishable from the active state.  相似文献   

20.
The rate of regeneration of rhodopsin, from 11-cis-retinal and opsin, and bacteriorhodopsin from all-trans-retinal and bacterio-opsin, in the presence or absence of compounds whose structures partially resemble retinal were measured. Some of these compounds severely slowed down the regeneration process, but did not influence the extent of regeneration. In the case of compounds with a carbonyl functional group they were not joined to the active site of the apo-protein via a Schiff's base linkage since after treatment with NaBH4 an active apo-protein remained. The most effective inhibitors of rhodopsin regeneration were molecules whose structure could be superimposed on 9-cis or 11-cis retinal up to carbon atom 11. These C13 and C15 molecules were not distinguished between aldehyde, ketone or alcohol functional groups. The regeneration of bacteriorhodopsin was not inhibited by retinal analogues with short side chains. The most effective inhibitors were the all-trans C17-aldehyde (beta-ionylideneacetaldehyde) or C18-ketone (beta-ionylidenepent-3-ene-2-one) which, compared to retinal, lack two or three carbon atoms from the end of the poylene chain. The inhibition was very dependent upon the presence of the all-trans isomer and required aldehyde or ketone as functional group nitriles and alcohols were less effective. However, similarly to retinol, the all-trans C17 and C18 alcohols underwent a bathochromic shift and showed fine-structured spectra when mixed with bacterio-opsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号