首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of icilin, a potent agonist of transient receptor potential ankyrin 1 (TRPA1) and TRPM8, on glycinergic transmission was examined in mechanically isolated rat medullary dorsal horn neurons by use of the conventional whole-cell patch-clamp technique. Icilin increased the frequency of glycinergic spontaneous miniature inhibitory post-synaptic currents (mIPSCs) in a dose-dependent manner. Either allyl isothiocyanate(AITC) or cinnamaldehyde, other TRPA1 agonists, also increased mIPSC frequency, but the extent of facilitation induced by AITC or cinnamaldehyde was less than that induced by icilin. However, menthol, a TRPM8 agonist, had no facilitatory effect on glycinergic mIPSCs. The icilin-induced increase in mIPSC frequency was significantly inhibited by either HC030031, a selective TRPA1 antagonist, or ruthenium red, a non-selective transient receptor potential channel blocker. Icilin failed to increase glycinergic mIPSC frequency in the absence of extracellular Ca(2+), suggesting that the icilin-induced increase in mIPSC frequency is mediated by the Ca(2+) influx from the extracellular space. In contrast, icilin still increased mIPSC frequency either in the Na(+) -free external solution or in the presence of Cd(2+), a general voltage-dependent Ca(2+) channel blocker. The present results suggest that icilin acts on pre-synaptic TRPA1-like ion channels, which are permeable to Ca(2+), to enhance glycinergic transmission onto medullary dorsal horn neurons. The TRPA1-like channel-mediated enhancement of glycinergic transmission in medullary dorsal horn neurons would contribute to the regulation of pain information from the peripheral tissues.  相似文献   

2.
Zinc enriched (ZEN) neurons and terminals are abundant in the rodent spinal cord. Zinc ions have been suggested to modulate the excitability of primary afferent fibers believed to be important in nociceptive transmission. To test the hypothesis that vesicular zinc concentration is related to neuropathic pain we applied Chung’s rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic pain. The animals were then sacrificed 5 days later. The ZnT3 immunoreactivity was found to have decreased significantly in dorsal horn of fourth, fifth, and sixth lumbar segments. In parallel with the depressed ZnT3 immunoreactivity the amount of vesicular zinc decreased perceptibly in superficial gray matters of especially layer I-IV of the same segments. The transection-induced reduction of vesicular zinc in ZEN terminals of the dorsal horn was synchronic to reduced pain threshold, as measured by von Frey method. In a separate study, we observed intensive zinc selenite precipitation in somata of the smaller spinal ganglion cell, but 5 days after spinal nerve transection zinc precipitation was also found in the lager ganglion cells. The present results indicate that zinc may be involved in pain mechanism in the spinal ganglion level. These results support the hypothesis that vesicular zinc might have a modulatory role for neuropathic pain. Thus, increased pain sensitivity might be related to reduce vesicular zinc level in the dorsal spinal gray matter.  相似文献   

3.
Our electrophysiological studies have shown that both purinergic and glutamatergic receptors are involved in central sensitization of nociceptive neurons in the medullary dorsal horn (MDH). Here we assessed the effects of intrathecal administration of apyrase (a nucleotide degrading enzyme of endogenous adenosine 5-triphosphate [ATP]), a combination of apyrase and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, an adenosine A1 receptor antagonist), or 2,3-O-2,4,6-trinitrophenyl-adenosine triphosphate (TNP-ATP, a P2X1, P2X3, P2X2/3 receptor antagonist) on the release of glutamate in the rat MDH evoked by application of mustard oil (MO) to the molar tooth pulp. In vivo microdialysis was used to dialyse the MDH every 5 min, and included 3 basal samples, 6 samples after drug treatment and 12 samples following application of MO. Tooth pulp application of MO induced a significant increase in glutamate release in the MDH. Superfusion of apyrase or TNP-ATP alone significantly reduced the MO-induced glutamate release in the MDH, as compared to vehicle. Furthermore, the suppressive effects of apyrase on glutamate release were reduced by combining it with DPCPX. This study demonstrates that application of an inflammatory irritant to the tooth pulp induces glutamate release in the rat MDH in vivo that may be reduced by processes involving endogenous ATP and adenosine.  相似文献   

4.
Sun YY  Li KC  Chen J 《生理学报》2004,56(4):444-450
脊髓背角感觉神经元不仅在感觉信息的传递和调节中起到重要作用,也是各种内源性和外源性药物的作用靶位.为了解静脉麻醉剂异丙酚是否对背角感觉神经元的反应性具有调节作用,本实验采用在体单细胞胞外记录技术,观察了脊髓背表面直接滴注0.5 μmol异丙酚对戊巴比妥钠麻醉大鼠脊髓背角广动力域(WDR)神经元和低阈值机械感受型(LTM)神经元反应性的影响.实验发现,异丙酚能抑制背角WDR神经元由施加于外周感受野伤害性热刺激(45、47、49和53℃,15 s)和夹捏机械刺激(10 s)诱发的反应性,与DMSO对照组比较具有显著性统计学差异(P<0.05);同样,异丙酚对非伤害性机械刺激诱发的WDR或LTM神经元的反应性也具有显著的抑制作用(P<0.05).本结果提示,异丙酚可直接作用于正常大鼠脊髓背角神经元,对由非伤害性和伤害性纤维介导的神经元反应性均产生抑制作用,因此异丙酚的脊髓抗伤害作用可能不是特异性的.  相似文献   

5.
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.  相似文献   

6.
目的 观察鸡脊髓背角胶状质中calbindin-D28k(CB)阳性终末的超微结构及其与含有substance P(SP)中央末梢之间的联系.方法 应用免疫电镜技术观察鸡脊髓背角胶状质中CB阳性终末的超微结构,并应用激光共聚焦显微镜观察鸡脊髓背角胶状质中CB和SP阳性突触小球中央末梢之间的关系.结果 电镜下观察:1)突触小球中含有心小泡的中央末梢呈CB免疫阳性;2)突触小球内或外的部分含小泡的树突呈CB免疫阳性;以及3)突触小球外的部分轴突呈CB免疫阳性.在突触结构内,CB免疫阳性反应物主要分布于突触后膜上.免疫荧光双标记法显示,SP阳性的含有心小泡的中央末梢呈CB阳性.结论 突触小球的中央末梢中CB与SP共存,提示CB可能通过其钙离子缓冲作用,参与脊髓的痛觉调制.  相似文献   

7.
cAMP is known to regulate neurotransmitter release via protein kinase A (PKA)-dependent and/or PKA-independent signal transduction pathways at a variety of central synapses. Here we report the cAMP-mediated long-lasting enhancement of glycinergic transmission in developing rat spinal substantia gelatinosa neurons. Forskolin, an adenylyl cyclase activator, elicited a long-lasting increase in the amplitude of nerve-evoked glycinergic inhibitory postsynaptic currents (IPSCs), accompanied by a long-lasting decrease in the paired-pulse ratio in immature substantia gelatinosa neurons, and this forskolin-induced increase in glycinergic IPSCs decreased with postnatal development. Forskolin also decreased the failure rate of glycinergic IPSCs evoked by minimal stimulation, and increased the frequency of glycinergic miniature IPSCs. All of these data suggest that forskolin induces the long-lasting enhancement of glycinergic transmission by increasing in the presynaptic release probability. This pre-synaptic action of forskolin was mediated by hyperpolarization and cyclic nucleotide-activated cation channels and an increase in intraterminal Ca2+ concentration but independent of PKA. The present results suggest that cAMP-dependent signal transduction pathways represent a dynamic mechanism by which glycinergic IPSCs could potentially be modulated during postnatal development.  相似文献   

8.
Feng YP  Yang K  Li YQ 《生理科学进展》2001,32(3):225-228
疹髓背角浅层是传递和调制外周伤害性信息的关键部位。起源于脑干的去甲肾上腺素(NA)能纤维终止脊髓背角,它们释放的NA具有抑制初级传入末梢释放谷氨酸和P物质、增加Ⅱ层(胶状质)抑制性神经活性物质释放的作用。此外,形态学研究提示NA可能直接抑制Ⅰ/Ⅲ层向丘脑传递伤害性信息的投射神经元。NA可能通过以上途径,实现对外周伤害性信息传递的调制而发挥镇痛作用。  相似文献   

9.
10.
Summary Atrial natriuretic factor (ANF) is a cardiac hormone with various functions in body homeostasis. It is also processed in the brain and in the peripheral nervous system where it appears to play a role as a neuromodulator. Little is known about the presence of ANF throughout the spinal cord of the guinea-pig. We therefore examined the distribution of ANF and its possible interrelation with primary sensory afferents in this species. Using enzyme- and fluorescence-immunohistochemistry on deparaffinized sections, ANF-like immunoreactivity was found to be present in nerve fibers in laminae I/II of the spinal cord and in neurons of spinal and trigeminal ganglia. Tachykinins and ANF coexisted in very few fibers of the spinal cord but did not coexist in primary sensory spinal or trigeminal neurons. Our results indicate that spinal ANF-immunoreactive fibers are of dual origin, primary sensory and non-primary sensory. The possibly heterogeneous source of the non-primary sensory ANF, its possible coexistence with other co-transmitters and functional implications are discussed.Preliminary aspects of this study have been reported at the 2nd World Congress of Neuroscience in Budapest (Weihe et al. 1987) and at the Versammlung der Anatomischen Gesellschaft in Zürich (Nohr et al. 1989)  相似文献   

11.
Peripheral nerve injury may lead to neuroadaptive changes of cellular signals in spinal cord that are thought to contribute to central mechanisms underlying neuropathic pain. Here we used a 2‐DE‐based proteomic technique to determine the global expression changes of synaptosome‐associated proteins in spinal cord dorsal horn after unilateral fifth spinal nerve injury (SNI). The fifth lumbar dorsal horns ipsilateral to SNI or sham surgery were harvested on day 14 post‐surgery, and the total soluble and synaptosomal fractions were isolated. The proteins derived from the synaptosomal fraction were resolved by 2‐DE. We identified 27 proteins that displayed different expression levels after SNI, including proteins involved in transmission and modulation of noxious information, cellular metabolism, membrane receptor trafficking, oxidative stress, apoptosis, and degeneration. Six of the 27 proteins were chosen randomly and further validated in the synaptosomal fraction by Western blot analysis. Unexpectedly, Western blot analysis showed that only one protein in the total soluble fraction exhibited a significant expression change after SNI. The data indicate that peripheral nerve injury changes not only protein expression but also protein subcellular distribution in dorsal horn cells. These changes might participate in the central mechanism that underlies the maintenance of neuropathic pain.  相似文献   

12.
13.
Owolabi SA  Saab CY 《FEBS letters》2006,580(18):4306-4310
Fractalkine (FKN) evokes nociceptive behavior in nai ve rats, whereas minocycline attenuates pain acutely after neuronal injury. We show that, in nai ve rats, FKN causes hyperresponsiveness of lumbar wide dynamic range neurons to brush, pressure and pinch applied to the hindpaw. One day after spinal nerve ligation (SNL), minocycline attenuates after-discharge and responses to brush and pressure. In contrast, minocycline does not alter evoked neuronal responses 10 days after SNL or sciatic constriction, but increases spontaneous discharge. We speculate that microglia rapidly alter sensory neuronal activity in nai ve and neuropathic rats acutely, but not chronically, after injury.  相似文献   

14.
In honor of the 50th anniversary of the “organizational hypothesis,” this paper reviews work on sexual differentiation of the spinal cord and peripheral nervous system. Topics considered include the spinal nucleus of the bulbocavernosus, the ejaculation center, the cremaster nucleus, sensory and autonomic neurons, and pain. These relatively simple neural systems offer ample confirmation that early exposure to testicular hormones masculinizes the nervous system, including final common pathways. However, I also discuss findings that challenge, or at least stretch, the organizational hypothesis, with important implications for understanding sex differences throughout the nervous system.  相似文献   

15.
We hypothesize: (a) peripheral innervation densities determine map scales in dorsal horn, (b) dorsal horn cell (DHC) receptive field (RF) geometries are determined by map scales, and (c) morphologies of primary afferents (PAs) and DHCs reflect their developmental history. We suggest the following sequence: (A) PAs project in a somatotopic mediolateral sequence. (B) DHCs assemble prototype RFs by sampling presynaptic neuropil with their dendrites. (C) PAs then project to all levels where their RFs are contained within prototype RFs of DHCs. (D) A competitive mechanism produces the adult form of DHC RFs. (E) Adult distributions of PA terminals and DHC dendrites reflect this developmental history. (F) Mediolateral somatotopic gradients are determined by RF densities of axons entering at the same levels. (G) Map scales at different rostrocaudal levels are determined by somatotopic gradients. (H) Geometries of DHC RFs are determined by constant convergence and divergence of monosynaptic connections. (I) Secondary processes further modify geometries of DHC RFs. (J) Residual self-organizing capacity supports maintenance and plastic mechanisms. We adduce the following evidence: (1) agreement between monosynaptically coupled inputs and cells' excitatory low threshold mechanoreceptive fields; (2) the temporal sequence of events during penetration of the gray matter by PAs; (3) variation of PA terminal and DHC dendritic domains as a function of map scale; (4) somatotopic gradients and geometries of DHC RFs in adult dorsal horn; (5) calculations of peripheral innervation densities and dorsal horn map scales; and (6) constant divergence and convergence between PAs and DHCs.  相似文献   

16.
Neurons located in the trigeminal subnucleus caudalis (Vc) play crucial roles in pain and sensorimotor functions in the orofacial region. Because of many anatomical and functional similarities with the spinal dorsal horn (SDH), Vc has been termed the medullary dorsal horn--analogous to the SDH. Here, we report that when compared with embryonic SDH neurons in culture, neurons isolated from the Vc region showed significantly slower growth, lower glutamate receptor activity, and more cells undergoing cell death. SDH neuron development was inhibited in co-cultures of SDH and Vc tissues while Vc neuron development was promoted by co-culture with SDH tissues. Furthermore, we identified that small (non-protein) ninhydrin-reacting molecules purified from either embryonic or post-natal Vc-conditioned medium inhibited neuronal growth whereas ninhydrin-reacting molecules from SDH-conditioned medium promoted neuronal growth. These findings suggest the involvement of locally released factors in the region-specific regulation of neuronal development in Vc and SDH, central nervous system regions playing critical roles in pain, and point to novel avenues for investigating central nervous system regionalization and for designing therapeutic approaches to manage neurodegenerative diseases and pain.  相似文献   

17.
Diabetic neuropathic pain is associated with increased glutamatergic input in the spinal dorsal horn. Group I metabotropic glutamate receptors (mGluRs) are involved in the control of neuronal excitability, but their role in the regulation of synaptic transmission in diabetic neuropathy remains poorly understood. Here we studied the role of spinal mGluR5 and mGluR1 in controlling glutamatergic input in a rat model of painful diabetic neuropathy induced by streptozotocin. Whole-cell patch-clamp recordings of lamina II neurons were performed in spinal cord slices. The amplitude of excitatory post-synaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than in control rats. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) inhibited evoked EPSCs and sEPSCs more in diabetic than in control rats. Also, the percentage of neurons in which sEPSCs and evoked EPSCs were affected by MPEP or the group I mGluR agonist was significantly higher in diabetic than in control rats. However, blocking mGluR1 had no significant effect on evoked EPSCs and sEPSCs in either groups. The mGluR5 protein level in the dorsal root ganglion, but not in the dorsal spinal cord, was significantly increased in diabetic rats compared with that in control rats. Furthermore, intrathecal administration of MPEP significantly increased the nociceptive pressure threshold only in diabetic rats. These findings suggest that increased mGluR5 expression on primary afferent neurons contributes to increased glutamatergic input to spinal dorsal horn neurons and nociceptive transmission in diabetic neuropathic pain.  相似文献   

18.
Using indirect immunofluorescence technique, avian pancreatic polypeptide (APP) immunoreactive cell bodies and fibres have been observed in the superficial laminae of the dorsal horn of the spinal cord and of the spinal trigeminal nucleus. Fibres were also seen in the ventral horns, in low numbers at the cervical and thoracic levels and in high numbers at the lower lumbar and upper sacral levels. Neither total cord transection, nor dorsal rhizotomy, nor capsaicin treatment seemed to affect the APP systems described above. The present findings suggest that an APP-like peptide may be involved in processing of sensory information at the level of the first relay station.  相似文献   

19.
Zebrafish possess a robust, innate CNS regenerative ability. Combined with their genetic tractability and vertebrate CNS architecture, this ability makes zebrafish an attractive model to gain requisite knowledge for clinical CNS regeneration. In treatment of neurological disorders, one can envisage replacing lost neurons through stem cell therapy or through activation of latent stem cells in the CNS. Here we review the evidence that radial glia are a major source of CNS stem cells in zebrafish and thus activation of radial glia is an attractive therapeutic target. We discuss the regenerative potential and the molecular mechanisms thereof, in the zebrafish spinal cord, retina, optic nerve and higher brain centres. We evaluate various cell ablation paradigms developed to induce regeneration, with particular emphasis on the need for (high throughput) indicators that neuronal regeneration has restored sensory or motor function. We also examine the potential confound that regeneration imposes as the community develops zebrafish models of neurodegeneration. We conclude that zebrafish combine several characters that make them a potent resource for testing hypotheses and discovering therapeutic targets in functional CNS regeneration. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号