首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of galanin-like immunoreactivity in various regions of the central nervous system was assessed in three mammalian species, pig, rat, and human, by radioimmunoassay. Galanin concentrations were highest in the hypothalamus and pituitary region. In spinal cord, there was a rostrocaudal/dorsoventral gradient with highest levels observed in the sacral dorsal horn. Serial dilutions of porcine tissue extracts diluted parallel to the porcine standard curve, while the rat and human tissue extracts did not. In all tissues examined by high pressure liquid chromatography, the principal peak of immunoreactivity coeluted with the authentic porcine galanin standard and was decreased by trypsin cleavage. These results suggest a role for galanin in the central nervous system and support species differences in the structure of galanin.  相似文献   

2.
Homeobox Genes in the Developing Mouse Brain   总被引:3,自引:0,他引:3  
Abstract: Any list of past and recent findings on vertebrate brain prenatal development would have to include the fundamental roles of homeobox genes, the genes encoding the nuclear regulatory homeodomain proteins. The discovery of homeobox genes and their involvement as master regulatory elements in programing the development of an embryo into a complete adult organism has provided a key to our understanding of ontogenesis. Also, the correlation of mouse developmental mutants and their corresponding human syndromes with mutations in homeobox genes has provided further evidence for the fundamental role of homeobox genes during the vertebrate brain embryonic development. Here, we review the expression patterns and the phenotypes of gene mutations that implicate a large repertoire of mouse homeobox genes in the specification of neuronal functions during brain embryogenesis.  相似文献   

3.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

4.
  总被引:1,自引:6,他引:1  
Abstract: A comprehensive study was carried out to clarify the chemical compositions of spinal cord, cord myelin, and myelin subfractions of multiple sclerosis (MS). The protein compositions of normal-appearing cerebral white matter and cerebral plaque and periplaque tissues were also analyzed for comparison. MS whole cord samples were found to contain higher amounts of water compared with normal samples. The total lipid contents were below normal. Among the individual lipids, cholesterol content remained unchanged, whereas cholesteryl esters appeared increased in MS cords. The acidic phospholipid concentrations were found to be lower than normal. Glycolipids, such as cerebrosides GM4, GM1, and GD1b, which are abundant in myelin, were all decreased. However, the concentrations of GM3 and GD3, which are more characteristic of reactive astrocytes, were highly elevated. The total protein content of MS cord samples was decreased, and the decrease was attributable to the loss of myelin proteins as evidenced by the low recovery of myelin. The concentrations of myelin-specific proteins, such as proteolipid protein and myelin basic protein, were significantly reduced. Other changes in the protein compositions included the accretion of two low molecular weight proteins of approximately 11,000 and 12,000, and the appearance of a periodic acid-Schiff-positive protein with the same electrophoretic mobility as the P0 protein. Analysis of the isolated myelin indicated that it had a grossly normal protein composition. However, the two low molecular weight proteins and the P0 protein appeared to be enriched in an upper-phase cord subtraction. We attribute the appearance of the two low molecular weight proteins to the breakdown of proteolipid protein and/or myelin basic protein as a result of demyelination, and the appearance of P0 to the involvement of PNS myelin. The latter finding provides the first biochemical evidence that in MS cord, remyelination can be achieved in part by invading Schwann cells and/or by the small number of Schwann cells that may be present in the cord.  相似文献   

5.
6.
    
Pain is a common clinical symptom that seriously affects the quality of life in a variety of patient populations. In recent years, research on the role of adenosine signaling in pain modulation has made great progress. Adenosine is a purine nucleoside and a neuromodulator, and regulates multiple physiological and pathophysiological functions through the activation of four G protein–coupled receptors, which are classified as A1, A2A, A2B, and A3 adenosine receptors (ARs). Adenosine and its receptors that are widespread in the central nervous system (CNS) play an important role in the processing of nociceptive sensory signals in different pain models. A1Rs have the highest affinity to adenosine, and the role in analgesia has been well investigated. The roles of A2ARs and A2BRs in the modulation of pain are controversial because they have both analgesic and pronociceptive effects. The analgesic effects of A3Rs are primarily manifested in neuropathic pain. In this article, we have reviewed the recent studies on ARs in the modulation of neuropathic pain, inflammatory pain, postoperative pain, and visceral pain in the CNS. Furthermore, we have outlined the pathways through which ARs contribute to pain regulation, thereby shedding light on how this mechanism can be targeted to provide effective pain relief.  相似文献   

7.
亨廷顿蛋白相关蛋白1在成年大鼠脊髓中的分布   总被引:2,自引:0,他引:2  
目的观察亨廷顿蛋白相关蛋白1(huntingtin-associated protein 1, HAP1)在成年大鼠脊髓中的分布特点.方法采用免疫组织化学ABC法和免疫印迹(Western blotting)方法.结果免疫组织化学结果显示,在成年大鼠脊髓中,以背角灰质浅层(Rexed Ⅰ,Ⅱ层)的HAP1免疫反应性最强,阳性细胞最密集,免疫反应产物除分布在胞体外,还大量弥散分布于胞体间的神经毡内;背角深层有部分HAP1免疫反应阳性细胞呈散在分布,中央管周围灰质(Rexed X)内阳性胞体密度和免疫反应性强度仅次于后角浅层,而在脊髓腹角,偶见HAP1免疫反应阳性神经元.此外, Western blotting分析显示,脊髓背角内HAP1表达水平明显高于脊髓前角.结论 HAP1主要分布于大鼠脊髓背角灰质浅层和中央管周围灰质神经元内,提示其可能与痛觉信息一级传入和/或调控有关.  相似文献   

8.
In honor of the 50th anniversary of the “organizational hypothesis,” this paper reviews work on sexual differentiation of the spinal cord and peripheral nervous system. Topics considered include the spinal nucleus of the bulbocavernosus, the ejaculation center, the cremaster nucleus, sensory and autonomic neurons, and pain. These relatively simple neural systems offer ample confirmation that early exposure to testicular hormones masculinizes the nervous system, including final common pathways. However, I also discuss findings that challenge, or at least stretch, the organizational hypothesis, with important implications for understanding sex differences throughout the nervous system.  相似文献   

9.
10.
Zebrafish possess a robust, innate CNS regenerative ability. Combined with their genetic tractability and vertebrate CNS architecture, this ability makes zebrafish an attractive model to gain requisite knowledge for clinical CNS regeneration. In treatment of neurological disorders, one can envisage replacing lost neurons through stem cell therapy or through activation of latent stem cells in the CNS. Here we review the evidence that radial glia are a major source of CNS stem cells in zebrafish and thus activation of radial glia is an attractive therapeutic target. We discuss the regenerative potential and the molecular mechanisms thereof, in the zebrafish spinal cord, retina, optic nerve and higher brain centres. We evaluate various cell ablation paradigms developed to induce regeneration, with particular emphasis on the need for (high throughput) indicators that neuronal regeneration has restored sensory or motor function. We also examine the potential confound that regeneration imposes as the community develops zebrafish models of neurodegeneration. We conclude that zebrafish combine several characters that make them a potent resource for testing hypotheses and discovering therapeutic targets in functional CNS regeneration. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.  相似文献   

11.
Summary The seventh cranial nerve in Rana pipiens is a slender nerve with limited peripheral distribution. We investigated the afferent and efferent components of this nerve by labeling its major branch, the hyomandibular, with horseradish peroxidase. The efferent portion of the seventh nerve originates from a small cell group in the upper medulla which contains two subdivisions. Afferent fibers carried in nerve VII travel in the solitary tract and the dorsolateral funiculus. The solitary component consists of a small number of ascending fibers that reach the level of the trigeminal nucleus and a large descending component that terminates slightly caudal to the obex in the commissural nuclei of the solitary complex. Afferent fibers also descend in the dorsolateral funiculus; many of these fibers cross dorsal to the central canal in the lower medulla. Most of the fibers in the dorsolateral funiculus terminate in the ipsilateral and contralateral dorsal horns and in nuclei of the dorsal column. A few ipsilateral fibers reach lower thoracic levels of the spinal cord.  相似文献   

12.
Wnt-1 and Wnt-3a proto-on-cogenes have been implicated in the development of midbrain and hindbrain structures. Evidence for such a role has been derived from in situ hybridization studies showing Wnt-1 and -3a expression in developing cranial and spinal cord regions and from studies of mutant mice whose Wnt-1 genes have undergone targeted disruption by homologous recombination. Wnt-1 null mutants exhibit cranial defects but no spinal cord abnormalities, despite expression of the gene in these regions. The absence of spinal cord abnormalities is thought to be due to a functional compensation of the Wnt-1 deficiency by related genes, a problem that has complicated the analysis of null mutants of other developmental genes as well. Herein, we describe the attenuation of Wnt-1 expression using antisense oligonucleotide inhibition in mouse embryos grown in culture. We induce similar mid- and hindbrain abnormalities as those seen in the Wnt-1 null mutant mice. Attentuation of Wnt-1 expression was also associated with cardiomegaly resulting in hemostasis. These findings are consistent with the possibility that a subset of Wnt-1 expressing cells include neural crest cells known to contribute to septation of the truncus arteriosus and to formation of the visceral arches. Antisense knockout of Wnt-3a, a gene structurely related to Wnt-1, targeted the forebrain and midbrain region, which were hy-poplastic and failed to expand, and the spinal cord, which exhibited lateral outpocketings at the level of the forelimb buds. Dual antisense knockouts of Wnt-1 and Wnt-3a targeted all brain regions leading to incomplete closure of the cranial neural folds, and an increase in the number and severity of outpocketings along the spinal cord, suggesting that these genes complement one another to produce normal patterning of the spinal cord. The short time required to assess the mutant phenotype (2 days) and the need for limited sequence information of the target gene (20-25 nu-cleotides) make this antisense oligonucleotide/ whole embryo culture system ideal for testing the importance of specific genes and their interactions in murine embryonic development. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Neuromodulatory inputs are known to play a major role in the adaptive plasticity of rhythmic neural networks in adult animals. Using the crustacean stomatogastric nervous system, we have investigated the role of modulatory inputs in the development of rhythmic neural networks. We found that the same neuronal population is organised into a single network in the embryo, as opposed to the two networks present in the adult. However, these adult networks pre-exist in the embryo and can be unmasked by specific alterations of the neuromodulatory environment. Similarly, adult networks may switch back to the embryonic phenotype by manipulating neuromodulatory inputs. During development, we found that the early established neuromodulatory population display alteration in expressed neurotransmitter phenotypes, and that although the population of modulatory neurones is established early, with morphology and projection pattern similar to adult ones, their neurotransmitter phenotype may appear gradually. Therefore the abrupt switch from embryonic to adult network expression occurring at metamorphosis may be due to network reconfiguration in response to changes in modulatory input, as found in adult adaptive plasticity. Strikingly, related crustacean species express different motor outputs using the same basic network circuitry, due to species-specific alteration in neuromodulatory substances within homologous projecting neurones. Therefore we propose that alterations within neuromodulatory systems to a given rhythmic neural network displaying the same basic circuitry may account for the generation of different motor outputs throughout development (ontogenetic plasticity), adulthood (adaptive plasticity) and evolution (phylogenetic plasticity).Abbreviations CoG Commissural ganglion - OG Oesophageal ganglion - STG Stomatogastric ganglion - STNS Stomatogastric nervous system  相似文献   

14.
    
Summary The early appearance of catecholaminergic neurons, as revealed by fluorescence histochemistry, has been determined in the central nervous system of quail, pheasant, and pigeon embryos. The first neuronal assemblies displaying specific fluorescence are the locus coeruleus and the nucleus subcoeruleus ventralis. Taking into account the differences in the length of the prehatching period of these three avian species, the first catecholamine-containing neurons appear earlier in the precocial quail and pheasant than in the altricial pigeon.Investigation supported by grants from the Italian National Research Council (CNR) No 83.02058.04 (R.G.) and No 83.00492.04 (G.C.P.).  相似文献   

15.
Summary An electron microscopical study has been made of the cervical spinal cord of Xenopus laevis embryos, from the time that the neural tube closes until the larvae were hatched and could swim. Sections of the whole cord were searched for intercellular junctions during this period. Two nonsynaptic types were found, the first were widely distributed puncta adherentia, the second were rare and similar to gap junctions. Membrane specializations with synaptic vesicles were first found when the neural folds had fused; membrane-vesicle clusters which looked like the presynaptic half of a synaptic junction were present, together with synaptic junctions lacking any postsynaptic membrane thickening or cytoplasm density. About four hours later, mature synaptic junctions with full thickening of the postsynaptic membrane, dense cytoplasm and striated or dense material in the synaptic cleft were present. Presynaptic mitochondria, dense-cored and flattened vesicles, fibre to fibre and fibre to cell body synapses were present from the first, as were synapses onto very fine dendrites which might be filopodia from dendritic growth cones. Synaptogenesis may start with the accumulation of vesicles in dense cytoplasm near a thickened cell membrane; the postsynaptic element becomes associated with this membrane-vesicle cluster and matures by increasing cleft and cytoplasmic density, and by membrane thickening.  相似文献   

16.
Abstract: Recombinant herpes simplex virus-1 encoding the rat preproenkephalin A (HSVLatEnk1) was generated for driving the expression of preproenkephalin A-derived peptides in dorsal root ganglia of rats in vivo. Three weeks after infection via the hind footpads, quantitative RT-PCR and in situ hybridization experiments showed a strong expression of preproenkephalin A mRNA in lumbar dorsal root ganglia. In addition, a 40–160% increase in radioimmunoassayable Met-enkephalin-like material concentrations was found in the dorsal spinal cord and dorsal root ganglia, respectively, at the lumbar level in HSVLatEnk1-infected rats as compared with animals infected with β-galactosidase-encoding recombinant herpes simplex virus-1 or control rats. These data demonstrate the efficacy of the preproenkephalin A encoding vector and suggest that it should help in elucidating the role of Met-enkephalin-containing primary afferent fibers in pain transmission and/or control.  相似文献   

17.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

18.
Central pattern generators (CPGs) are defined as neuronal circuits capable of producing a rhythmic and coordinated output without the influence of sensory input. The locomotor and respiratory neuronal circuits are two of the better-characterized CPGs, although much work remains to fully understand how these networks operate. Glutamatergic neurons are involved in most neuronal circuits of the nervous system and considerable efforts have been made to study glutamate receptors in nervous system signaling using a variety of approaches. Because of the complexity of glutamate-mediated signaling and the variety of receptors triggered by glutamate, it has been difficult to pinpoint the role of glutamatergic neurons in neuronal circuits. In addition, glutamate is an amino acid used by every cell, which has hampered identification of glutamatergic neurons. Glutamatergic excitatory neurotransmission is dependent on the release from glutamate-filled presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Recent data describe that Vglut2 (Slc17a6) null mutant mice die immediately after birth due to a complete loss of the stable autonomous respiratory rhythm generated by the pre-B?tzinger complex. Surprisingly, we found that basal rhythmic locomotor activity is not affected in Vglut2 null mutant embryos. With this perspective, we discuss data regarding presence of VGLUT1, VGLUT2 and VGLUT3 positive neuronal populations in the spinal cord.  相似文献   

19.
Patients with spinal cord injury (SCI) may or may not develop central neuropathic pain despite having cord lesions of apparently the same site, extension and nature. The consequences of the cord lesion in the central nervous system and the mechanisms underlying pain are unclear. In this study, we examined sensory detection and pain thresholds above injury level in 17 SCI patients with central neuropathic pain, in 18 SCI patients without neuropathic pain, and in 20 control subjects without injury and pain. The SCI pain group had significantly higher cold and warm detection thresholds compared with the SCI pain free group and controls and higher tactile detection thresholds compared with the SCI pain free group. No difference in pain or pain tolerance thresholds was seen among pain and pain free SCI patients. These data suggest changes in somatosensory function in dermatomes rostral to the segmental injury level linked to the presence of central neuropathic pain in SCI patients. The results are discussed in relation to current concepts of pain inhibitory and facilitating systems.  相似文献   

20.
摘要 目的: 利用电刺激大鼠的偏头痛动物型, 研究与偏头痛病理生理关系密切的 AKAP5 基因在动物型中的表达。方法: 体重为 250 克左右 SD 大鼠 27 只, 随机分为 a 对照组 (n=4 ) 、 b 电刺激 30 分钟组(n=6)、 c 电刺激 60 分钟组(n=6)、 d 电刺激 120 分钟组(n=5)和 e 吗啡干预 + 电刺激 120 分钟组(n=6),共 5 组。对照组不予刺激, 其余各组电刺激不同时间, 各组结束后立即断头取脑,取出延髓及上颈段 (至颈 2 ), 利用 western-blot 技术对 AKAP5 在三叉神经核尾侧复合体中的表达进行研究。 结果: AKAP5 在大鼠三叉神经核尾侧复合体中有表达, 各组 AKAP5 积分密度比值分别为 2.804, 0.913, 1.383, 0.634, 1.030, 组间表达无显著差异( P=0.9921> 0.05 )。结论: AKAP5 在电刺激与对照组中的表达无显著差异, 吗啡对 AKAP5 的表达无显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号