首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dislocation and degradation from the ER are regulated by cytosolic stress   总被引:9,自引:0,他引:9  
Akey step in ER-associated degradation (ERAD) is dislocation of the substrate protein from the ER into the cytosol to gain access to the proteasome. Very little is known about how this process is regulated, especially in the case of polytopic proteins. Using pulse-chase analysis combined with subcellular fractionation, we show that connexins, the four transmembrane structural components of gap junctions, can be chased in an intact form from the ER membrane into the cytosol of proteasome inhibitor-treated cells. Dislocation of endogenously expressed connexin from the ER was reduced 50-80% when the cytosolic heat shock response was induced by mild oxidative or thermal stress, but not by treatments that instead upregulate the ER unfolded protein response. Cytosolic but not ER stresses slowed the normally rapid degradation of connexins, and led to a striking increase in gap junction formation and function in otherwise assembly-inefficient cell types. These treatments also inhibited the dislocation and turnover of a connexin-unrelated ERAD substrate, unassembled major histocompatibility complex class I heavy chain. Our findings demonstrate that dislocation is negatively regulated by physiologically relevant, nonlethal stress. They also reveal a previously unrecognized relationship between cytosolic stress and intercellular communication.  相似文献   

2.
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.  相似文献   

3.
Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27’s ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4’s impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin–proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.  相似文献   

4.
Control of ligand-gated ion channel (LGIC) expression is essential for the formation, maintenance and plasticity of synapses. Treatment of mouse myotubes with proteasome inhibitors increased the number of surface nicotinic acetylcholine receptors (AChRs), indicating LGIC expression is regulated by the ubiquitin-proteasome system (UPS). Elevated surface expression resulted from increased AChR delivery to the plasma membrane and not from decreased turnover from the surface. The rise in AChR trafficking was the direct result of increased assembly of subunits in the endoplasmic reticulum (ER). Because proteasome inhibitors also blocked ER-associated degradation (ERAD) of unassembled AChR subunits, the data indicate that the additional AChRs were assembled from subunits normally targeted for ERAD. Our data show that AChR surface expression is regulated by the UPS through ERAD, whose activity determines oligomeric receptor assembly efficiency.  相似文献   

5.
Misfolding of proteins during endoplasmic reticulum (ER) stress results in the formation of cytotoxic aggregates. The ER-associated degradation pathway counteracts such aggregation through the elimination of misfolded proteins by the ubiquitin-proteasome system. We now show that SHP substrate-1 (SHPS-1), a transmembrane glycoprotein that regulates cytoskeletal reorganization and cell-cell communication, is a physiological substrate for the Skp1-Cullin1-NFB42-Rbx1 (SCF(NFB42)) E3 ubiquitin ligase, a proposed mediator of ER-associated degradation. SCF(NFB42) mediated the polyubiquitination of immature SHPS-1 and its degradation by the proteasome. Ectopic expression of NFB42 both suppressed the formation of aggresome-like structures and the phosphorylation of the translational regulator eIF2alpha induced by overproduction of SHPS-1 as well as increased the amount of mature SHPS-1 at the cell surface. An NFB42 mutant lacking the F box domain had no such effects. Our results suggest that SCF(NFB42) regulates SHPS-1 biosynthesis in response to ER stress.  相似文献   

6.
Proteasome degradation of endoplasmic reticulum (ER)-misfolded proteins requires retrograde transport from ER to the cytosol. To date, it is not clear whether this event constitutes the exclusive ER degradation process for non-native membrane proteins. Here we describe the role of GTP in the degradation of DeltaF508-CFTR and the alpha subunit of the T-cell receptor (TCRalpha), representative misfolded ER membrane proteins. Selective intracellular GTP depletion extended the DeltaF508-CFTR half-life sixfold, whereas ATP depletion accelerated its turnover and inhibited only 80% of the proteasome activity that was not affected by GTP depletion. AlF(4)(-), a well-known inhibitor of heterotrimeric G proteins, but not of AlF(3), delayed the mutant CFTR turnover in vivo, in semi-intact cells and in ER-enriched microsomes, without affecting ER to Golgi cargo transport. DeltaF508-CFTR degradation was also inhibited by alkaline stripping of ER-associated membrane proteins. We propose that at the ER, GTP may participate in the disposal of misfolded membrane proteins through activation of heterotrimeric G proteins.  相似文献   

7.
8.
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin‐proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule‐deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO‐targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule‐deficient cells. Stress granule‐deficient cells showed an increase in the formation of mutant ataxin‐1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.  相似文献   

9.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.  相似文献   

10.
Aberrant secreted proteins can be destroyed by ER-associated protein degradation (ERAD), and a prominent, medically relevant ERAD substrate is the cystic fibrosis transmembrane conductance regulator (CFTR). To better define the chaperone requirements during CFTR maturation, the protein was expressed in yeast. Because Hsp70 function impacts CFTR biogenesis in yeast and mammals, we first sought ER-associated Hsp40 cochaperones involved in CFTR maturation. Ydj1p and Hlj1p enhanced Hsp70 ATP hydrolysis but CFTR degradation was slowed only in yeast mutated for both YDJ1 and HLJ1, suggesting functional redundancy. In contrast, CFTR degradation was accelerated in an Hsp90 mutant strain, suggesting that Hsp90 preserves CFTR in a folded state, and consistent with this hypothesis, Hsp90 maintained the solubility of an aggregation-prone domain (NBD1) in CFTR. Soluble ERAD substrate degradation was unaffected in the Hsp90 or the Ydj1p/Hlj1p mutants, and surprisingly CFTR degradation was unaffected in yeast mutated for Hsp90 cochaperones. These results indicate that Hsp90, but not the Hsp90 complex, maintains CFTR structural integrity, whereas Ydj1p/Hlj1p catalyze CFTR degradation.  相似文献   

11.
In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.  相似文献   

12.
Inhibition of protein folding in the endoplasmic reticulum (ER) causes ER stress, which triggers the unfolded protein response (UPR). To decrease the biosynthetic burden on the ER, the UPR inhibits in its initial stages protein synthesis. At later stages it upregulates components of ER-associated degradation (ERAD) and of the ubiquitin/proteasome system, which targets ER as well as cytosolic proteins for disposal. Here we report that, at later stages, the UPR also activates an alternative nonproteasomal pathway of degradation, which is resistant to proteasome inhibitors and is specific for ER substrates (assessed with uncleaved precursor of asialoglycoprotein receptor H2a and unassembled CD3delta) and not for cytosolic ones (p53). To mimic the initial inhibition of translation during UPR, we incubated cells with cycloheximide. After this treatment, degradation of ERAD substrates was no longer effected by proteasomal inhibition, similarly to the observed outcome of UPR. The degradation also became insensitive to abrogation of ubiquitination in a cell line carrying a thermosensitive E1 ubiquitin activating enzyme mutant. Of all protease inhibitors tested, only the metal chelator o-phenanthroline could block this nonproteasomal degradation. Preincubation of o-phenanthroline with Mn2+ or Co2+, but not with other cations, reversed the inhibition. Our results suggest that, upon inhibition of translation, an alternative nonproteasomal pathway is activated for degradation of proteins from the ER. This involves a Mn2+/Co2+-dependent metalloprotease or other metalloprotein. The alternative pathway selectively targets ERAD substrates to reduce the ER burden, but does not affect p53, the levels of which remain dependent on proteasomal control.  相似文献   

13.
The importance of ubiquitination in MHC class I-restricted Ag processing remains unclear. To address this issue, we overexpressed wild-type and dominant-negative lysineless forms of ubiquitin (Ub) in mammalian cells using an inducible vaccinia virus system. Overexpression of the lysineless Ub nearly abrogated polyubiquitination and potently inhibited epitope presentation from a cytosolic N-end rule substrate as well as endoplasmic reticulum (ER)-targeted model Ags. In contrast, there was little impact on Ag presentation from cytosolic proteins. These trends were location dependent; redirecting cytosolic Ag to the ER rendered presentation lysineless Ub-sensitive, whereas retargeting exocytic Ag to the cytosol had the inverse effect. This dichotomy was further underscored by small interfering RNA knockdown of the ER-associated Ub ligase Hrd1. Thus, Ub-dependent degradation appears to play a major role in the MHC class I-restricted processing of ER-targeted proteins and a more restricted role in the processing of cytosolic proteins.  相似文献   

14.
T Biederer  C Volkwein    T Sommer 《The EMBO journal》1996,15(9):2069-2076
We have investigated the degradation of subunits of the trimeric Sec61p complex, a key component of the protein translocation apparatus of the ER membrane. A mutant form of Sec6lp and one of the two associated proteins (Sss1p) are selectively degraded, while the third constituent of the complex (Sbh1p) is stable. Our results demonstrate that the proteolysis of the multispanning membrane protein Sec61p is mediated by the ubiquitin-proteasome pathway, since it requires polyubiquitination, the presence of a membrane-bound (Ubc6) and a soluble (Ubc7) ubiquitin-conjugating enzyme and a functional proteasome. The process is proposed to be specific for unassembled Sec61p and Sss1p. Thus, our results suggest that one pathway of ER degradation of abnormal or unassembled membrane proteins is initiated at the cytoplasmic side of the ER.  相似文献   

15.
16.
The folding of both wild-type and mutant forms of the cystic-fibrosis transmembrane-conductance regulator (CFTR), a plasma-membrane chloride-ion channel, is inefficient. Most nascent CFTR is retained in the endoplasmic reticulum and degraded by the ubiquitin proteasome pathway. Aberrant folding and defective trafficking of CFTRDeltaF508 is the principal cause of cystic fibrosis, but how the endoplasmic-reticulum quality-control system targets CFTR for degradation remains unknown. CHIP is a cytosolic U-box protein that interacts with Hsc70 through a set of tetratricorepeat motifs. The U-box represents a modified form of the ring-finger motif that is found in ubiquitin ligases and that defines the E4 family of polyubiquitination factors. Here we show that CHIP functions with Hsc70 to sense the folded state of CFTR and targets aberrant forms for proteasomal degradation by promoting their ubiquitination. The U-box appeared essential for this process because overexpresion of CHIPDeltaU-box inhibited the action of endogenous CHIP and blocked CFTR ubiquitination and degradation. CHIP is a co-chaperone that converts Hsc70 from a protein-folding machine into a degradation factor that functions in endoplasmic-reticulum quality control.  相似文献   

17.
Newly synthesized proteins that do not fold correctly in the ER are targeted for ER-associated protein degradation (ERAD) through distinct sorting mechanisms; soluble ERAD substrates require ER-Golgi transport and retrieval for degradation, whereas transmembrane ERAD substrates are retained in the ER. Retained transmembrane proteins are often sequestered into specialized ER subdomains, but the relevance of such sequestration to proteasomal degradation has not been explored. We used the yeast Saccharomyces cerevisiae and a model ERAD substrate, the cystic fibrosis transmembrane conductance regulator (CFTR), to explore whether CFTR is sequestered before degradation, to identify the molecular machinery regulating sequestration, and to analyze the relationship between sequestration and degradation. We report that CFTR is sequestered into ER subdomains containing the chaperone Kar2p, and that sequestration and CFTR degradation are disrupted in sec12ts strain (mutant in guanine-nucleotide exchange factor for Sar1p), sec13ts strain (mutant in the Sec13p component of COPII), and sec23ts strain (mutant in the Sec23p component of COPII) grown at restrictive temperature. The function of the Sar1p/COPII machinery in CFTR sequestration and degradation is independent of its role in ER-Golgi traffic. We propose that Sar1p/COPII-mediated sorting of CFTR into ER subdomains is essential for its entry into the proteasomal degradation pathway. These findings reveal a new aspect of the degradative mechanism, and suggest functional crosstalk between the secretory and the degradative pathways.  相似文献   

18.
19.
Segref A  Torres S  Hoppe T 《Genetics》2011,187(4):1235-1240
In eukaryotic cells, the ubiquitin/proteasome system (UPS) is a key determinant of proteostasis as it regulates the turnover of damaged proteins. However, it is still unclear how the UPS integrates intrinsic and environmental challenges to promote organismal development and survival. Here, we set up an in vivo degradation assay to facilitate the genetic identification of ubiquitin-dependent proteolysis pathways in the multicellular organism Caenorhabditis elegans. Using this assay, we found that mild induction of protein-folding stress, which is nontoxic for wild-type worms, strongly reduces ubiquitin-dependent protein turnover. Ubiquitin-mediated degradation is also reduced by metabolic stress, which correlates with life-span extension. Unlike other stress conditions, however, acute heat stress results in enhanced rather than reduced proteolysis. Intriguingly, our study provides the first evidence for the existence of tissue-specific degradation requirements because loss of key regulators of the UPS, such as proteasomal subunits, causes accumulation of the model substrate, depending on the tissue type. Thus, here we establish a screenable degradation assay that allows diverse genetic screening approaches for the identification of novel cell-type-specific proteostasis networks important for developmental processes, stress response, and aging, thereby substantially extending the work on recently described mechanistic UPS reporter studies.  相似文献   

20.
The cystic fibrosis transmembrane regulator (CFTR) is a Cl(-) channel known to influence other channels, including connexin (Cx) channels. To study the functional interaction between CFTR and gap junction channels, we coexpressed in Xenopus oocytes CFTR and either Cx45, Cx40, Cx32 or Cx50 and monitored junctional conductance (G (j)) and its sensitivity to transjunctional voltage (V (j)) by the dual voltage-clamp method. Application of forskolin induced a Cl(-) current; increased G (j) approximately 750%, 560%, 64% and 8% in Cx45, Cx40, Cx32 and Cx50, respectively; and decreased sensitivity to V (j ) gating, monitored by a change in the ratio between G (j) steady state and G (j) peak (G (j)SS/G (j)PK) at the pulse. In oocyte pairs expressing just Cx45 in one oocyte (#1) and both Cx45 and CFTR in the other (#2), with negative pulses applied to oocyte #1 forskolin application still increased G (j) and decreased the sensitivity to V (j) gating, indicating that CFTR activation is effective even when it affects only one of the two hemichannels and that the G (j) and V (j) changes are not artifacts of decreased membrane resistance in the pulsed oocyte. COOH-terminus truncation reduced the forskolin effect on Cx40 (Cx40TR) but not on Cx32 (Cx32TR) channels. The data suggest a cross-talk between CFTR and a variety of gap junction channels. Cytoskeletal scaffolding proteins and/or other intermediate cytoplasmic proteins are likely to play a role in CFTR-Cx interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号