首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
U6 snRNA sequences required for assembly of U4/U6 snRNP and splicing complexes were determined by in vitro reconstitution of snRNPs. Both mutagenesis and chemical modification/interference assays identify a U6 snRNA domain required for U4/U6 snRNP formation. The results support the existence of a U4/U6 snRNA interaction domain previously proposed on the basis of phylogenetic evidence. In addition, two short U6 snRNA regions flanking the U4/U6 interaction domain are essential to assemble the U4/U6 snRNP into splicing complexes. These two regions may represent binding sites for splicing factors or may facilitate the formation of an alternative U6 snRNA secondary structure during spliceosome assembly.  相似文献   

2.
Roles of U4 and U6 snRNAs in the assembly of splicing complexes.   总被引:14,自引:3,他引:11       下载免费PDF全文
A series of U4 and U6 snRNA mutants was analysed in Xenopus oocytes to determine whether they block splicing complex assembly or splicing itself. All the U4 and U6 mutants found to be inactive in splicing complementation resulted in defects in assembly of either U4/U6 snRNP or of splicing complexes. No mutants were found to separate the entry of U5 and U6 snRNAs into splicing complexes and neither of these RNAs was able to associate with the pre-mRNA in the absence of U4. In the absence of U6 snRNA, however, U4 entered a complex containing pre-mRNA as well as the U1 and U2 snRNAs. U6 nucleotides whose mutation resulted in specific blockage of the second step of splicing in Saccharomyces cerevisiae are shown not to be essential for splicing in the oocyte assay. The results are discussed in terms of the roles of U4 and U6 in the assembly and catalytic steps of the splicing process.  相似文献   

3.
Y T Yu  M D Shu    J A Steitz 《The EMBO journal》1998,17(19):5783-5795
Among the spliceosomal snRNAs, U2 has the most extensive modifications, including a 5' trimethyl guanosine (TMG) cap, ten 2'-O-methylated residues and 13 pseudouridines. At short times after injection, cellularly derived (modified) U2 but not synthetic (unmodified) U2 rescues splicing in Xenopus oocytes depleted of endogenous U2 by RNase H targeting. After prolonged reconstitution, synthetic U2 regenerates splicing activity; a correlation between the extent of U2 modification and U2 function in splicing is observed. Moreover, 5-fluorouridine-containing U2 RNA, a potent inhibitor of U2 pseudouridylation, specifically abolishes rescue by synthetic U2, while rescue by cellularly derived U2 is not affected. By creating chimeric U2 molecules in which some sequences are from cellularly derived U2 and others are from in vitro transcribed U2, we demonstrate that the functionally important modifications reside within the 27 nucleotides at the 5' end of U2. We further show that 2'-O-methylation and pseudouridylation activities reside in the nucleus and that the 5' TMG cap is not necessary for internal modification but is crucial for splicing activity. Native gel analysis reveals that unmodified U2 is not incorporated into the spliceosome. Examination of the U2 protein profile and glycerol-gradient analysis argue that U2 modifications directly contribute to conversion of the 12S to the 17S U2 snRNP particle, which is essential for spliceosome assembly.  相似文献   

4.
U4 snRNA is phylogenetically highly conserved and organized in several domains. To determine the function of each of the domains of human U4 snRNA in the multi-step process of snRNP and spliceosome assembly, we used reconstitution procedures in combination with snRNA mutagenesis. The highly conserved 5' terminal domain of U4 snRNA consists of the stem I and stem II regions that have been proposed to base pair with U6 snRNA, and the 5' stem-loop structure. We found that each of these structural elements is essential for spliceosome assembly. However, only the stem II region is required for U4-U6 interaction, and none of these elements for Sm protein binding. In contrast, the 3' terminal domain of U4 snRNA containing the Sm binding site is dispensable for both U4-U6 interaction and spliceosome assembly. Our results support an organization of the U4 snRNP into multiple functional domains, each of which acts at distinct stages of snRNP and spliceosome assembly.  相似文献   

5.
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD) and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects, including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.Key words: Cdc6, spindle assembly, Xenopus, oocytes, pre-RC proteins  相似文献   

6.
G Winkelmann  M Bach    R Lührmann 《The EMBO journal》1989,8(10):3105-3112
We have established an in vitro complementation system that has allowed us to investigate the role of individual purified snRNPs in the splicing of pre-mRNA molecules. For the preparation of snRNP-depleted nuclear extracts we have first removed the majority of endogenous snRNPs from the nuclear extracts by one passage over an anti-m3G column and then degraded the remaining snRNPs with micrococcal nuclease. The mixture of snRNPs U1, U2, U4/U6 and U5, obtained by anti-m3G immuno-affinity chromatography, was functionally active and able to restore the splicing of snRNP-depleted nuclear extracts. Mono-Q chromatography was used for further fractionation of the snRNPs U1-U6. This produced three fractions that were highly enriched in snRNPs U1 and U2, U5 and U4/U6 respectively. Conditions were found where addition of the [U1, U2] and the U4/U6 snRNP fractions to the snRNP-depleted nuclear extracts gave rise to the formation of splice intermediates in the absence of any 3' cleavage/exon 1-exon 2 product formation. Only when purified 20S U5 snRNPs were added did both steps of the splicing reaction occur efficiently. Our data suggest that U5 snRNP is absolutely required for the second step of splicing and is needed further for efficient initiation of the splicing reaction. The requirement for U5 snRNPs for splicing was corroborated by glycerol gradient sedimentation analysis of the respective reconstituted pre-mRNP complexes. Stable and efficient formation of 50-60S spliceosomes was observed only in the presence of all snRNPs.  相似文献   

7.
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.  相似文献   

8.
9.
A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly   总被引:125,自引:0,他引:125  
B Ruskin  P D Zamore  M R Green 《Cell》1988,52(2):207-219
Pre-mRNA splicing complex assembly is mediated by two specific pre-mRNA-snRNP interactions: U1 snRNP binds to the 5' splice site and U2 snRNP binds to the branch point. Here we show that unlike a purified U1 snRNP, which can bind to a 5' splice site, a partially purified U2 snRNP cannot interact with its target pre-mRNA sequence. We identify a previously uncharacterized activity, U2AF, that is required for the U2 snRNP-branch point interaction and splicing complex formation. Using RNA substrate exclusion and competition assays, we demonstrate that U2AF binds to the 3' splice site region prior to the U2 snRNP-branch point interaction. This provides an explanation for the necessity of the 3' splice site region in U2 snRNP binding and, hence, the first step of splicing.  相似文献   

10.
U4atac snRNA forms a base-paired complex with U6atac snRNA. Both snRNAs are required for the splicing of the minor U12-dependent class of eukaryotic nuclear introns. We have developed a new genetic suppression assay to investigate the in vivo roles of several regions of U4atac snRNA in U12-dependent splicing. We show that both the stem I and stem II regions, which have been proposed to pair with U6atac snRNA, are required for in vivo splicing. Splicing activity also requires U4atac sequences in the 5' stem-loop element that bind a 15.5 kDa protein that also binds to a similar region of U4 snRNA. In contrast, mutations in the region immediately following the stem I interaction region, as well as a deletion of the distal portion of the 3' stem-loop element, were active for splicing. Complete deletion of the 3' stem-loop element abolished in vivo splicing function as did a mutation of the Sm protein binding site. These results show that the in vivo sequence requirements of U4atac snRNA are similar to those described previously for U4 snRNA using in vitro assays and provide experimental support for models of the U4atac/U6atac snRNA interaction.  相似文献   

11.
We have developed an in vitro complementation assay to analyse the functions of U6 small nuclear RNA (snRNA) in splicing and in the assembly of small nuclear ribonucleoproteins (snRNPs) and spliceosomes. U6-specific, biotinylated 2'-OMe RNA oligonucleotides were used to deplete nuclear extract of the U4/U6 snRNP and to affinity purify functional U4 snRNP. The addition of affinity purified U4 snRNP together with U6 RNA efficiently restored splicing activity, spliceosome assembly and U4/U5/U6 multi-snRNP formation in the U4/U6-depleted extract. Through a mutational analysis we have obtained evidence for multiple sequence elements of U6 RNA functioning during U4/U5/U6 multi-snRNP formation, spliceosome assembly and splicing. Surprisingly, the entire 5' terminal domain of U6 RNA is dispensable for splicing function. In contrast, two regions in the central and 3' terminal domain are required for the assembly of a functional U4/U5/U6 multi-snRNP. Another sequence in the 3' terminal domain plays an essential role in spliceosome assembly; a model is strongly supported whereby base pairing between this sequence and U2 RNA plays an important role during assembly of a functional spliceosome.  相似文献   

12.
F Caspary  A Shevchenko  M Wilm    B Séraphin 《The EMBO journal》1999,18(12):3463-3474
We have partially purified the U2 snRNP of Saccharomyces cerevisiae. Identification of some proteins consistently found in the purified fractions by nanoelectrospray mass spectrometry indicated the presence of a novel splicing factor named Rse1p. The RSE1 gene is essential and codes for a 148.2 kDa protein. We demonstrated that Rse1p associates specifically with U2 snRNA at low salt concentrations. In addition, we showed that Rse1p is a component of the pre-spliceosome. Depletion of Rse1p and analysis of a conditional mutant indicated that Rse1p was required for efficient splicing in vivo. In vitro Rse1p is required for the formation of pre-spliceosomes. Database searches revealed that Rse1p is conserved in humans and that it belongs to a large protein family that includes polyadenylation factors and DNA repair proteins. The characteristics of Rse1p suggest that its human homologue could be a subunit of the SF3 splicing factor.  相似文献   

13.
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.  相似文献   

14.
We showed previously that the yeast Prp4 protein is a spliceosomal factor that is tightly associated with the U4, U5, and U6 small nuclear RNAs. Moreover, Prp4 appears to associate very transiently with the spliceosome before the U4 snRNA dissociates from the spliceosome. Prp4 belongs to the Gbeta-like protein family, which suggests that the Prp4 Gbeta motifs could mediate interactions with other components of the spliceosome. To investigate the function of the Gbeta motifs, we introduced mutations within the second WD-repeat of Prp4. Among the 35 new alleles found, 24 were pseudo wild-type mutants, 8 failed to grow at any temperature, and 3 were conditional sensitive mutants. The biochemical defects of the three thermosensitive prp4 mutants have been examined by immunoprecipitation, native gel electrophoresis, and glycerol gradient centrifugation. First, we show that snRNP formation is not impaired in these mutants and that Prp4 is present in the U4/U6 and U4/U6-U5 snRNP particles. We also demonstrate that spliceosome assembly is largely unaffected despite the fact that the first step of splicing does not occur. However, both Prp4 and U4 snRNA remain tightly associated with the spliceosome and this blocks the transition toward an active form of the spliceosome. Our results suggest a possible role of Prp4 in mediating important conformational rearrangements of proteins within the spliceosome that involve the region containing the Gbeta-repeats.  相似文献   

15.
During each spliceosome cycle, the U6 snRNA undergoes extensive structural rearrangements, alternating between singular, U4-U6 and U6-U2 base-paired forms. In Saccharomyces cerevisiae, Prp24 functions as an snRNP recycling factor, reannealing U4 and U6 snRNAs. By database searching, we have identified a Prp24-related human protein previously described as p110(nrb) or SART3. p110 contains in its C-terminal region two RNA recognition motifs (RRMs). The N-terminal two-thirds of p110, for which there is no counterpart in the S.cerevisiae Prp24, carries seven tetratricopeptide repeat (TPR) domains. p110 homologs sharing the same domain structure also exist in several other eukaryotes. p110 is associated with the mammalian U6 and U4/U6 snRNPs, but not with U4/U5/U6 tri-snRNPs nor with spliceosomes. Recom binant p110 binds in vitro specifically to human U6 snRNA, requiring an internal U6 region. Using an in vitro recycling assay, we demonstrate that p110 functions in the reassembly of the U4/U6 snRNP. In summary, p110 represents the human ortholog of Prp24, and associates only transiently with U6 and U4/U6 snRNPs during the recycling phase of the spliceosome cycle.  相似文献   

16.
The four major nucleoplasmic small nuclear ribonucleoprotein particles U1, U2, U4/U6 and U5 can be extensively purified from HeLa cells by immunoaffinity chromatography using a monoclonal anti-trimethylguanosine antibody. The snRNP particles in active splicing extracts are selectively bound to the immunoaffinity matrix, and are then gently eluted by competition with an excess of free nucleoside. Biochemical complementation studies show that the purified snRNPs are active in pre-mRNA splicing, but only in the presence of additional non-snRNP protein factors. All the RNPs that are necessary for splicing can be purified in this manner. The active snRNPs are characterized with respect to their polypeptide composition, and shown to be distinct from several other activities implicated in splicing.  相似文献   

17.
J Hamm  I W Mattaj 《The EMBO journal》1989,8(13):4179-4187
The particle state of U snRNPs was analyzed in oocytes, eggs, embryos and testes from Xenopus laevis. In each case both the relative abundance and the composition of some U snRNPs were found to differ from that of somatic cells. U2 and U6 snRNPs were the most prominent U snRNPs in germ cells and early embryos. In particular, the concentration of U6 snRNA was 10-20 times higher than that of U4 snRNA. Most of the U6 snRNA was not associated with U4 snRNA and migrated on sucrose gradients as a U6 snRNP. The structure of this novel U snRNP was analyzed. A single protein of 50 kd was copurified with U6 snRNPs by a combination of gradient fractionation, immunodepletion with anti-Sm antibodies and immunoprecipitation with anti-6-methyl adenosine antibodies. Although the U6 snRNP did not contain Sm proteins it migrated into the nucleus when U6 snRNA was injected into the cytoplasm of oocytes. Two U6 snRNA elements have been identified. The first is essential for nuclear migration in oocytes, but not for the formation of U4/6 snRNPs in vitro and might be the binding site of a U6-specific protein. The second element was required for interaction with U4 snRNPs but not for nuclear targeting.  相似文献   

18.
The role of U5 snRNP in pre-mRNA splicing.   总被引:14,自引:2,他引:12       下载免费PDF全文
A J Newman 《The EMBO journal》1997,16(19):5797-5800
The current model for the function of the U5 small nuclear ribonucleoprotein particle (snRNP) in the spliceosome proposes that U5 carries binding sites for the 5' and 3' exons, allowing the spliceosome to 'tether' the 5' exon intermediate produced by the first catalytic step and align it with the 3' exon for the second step. Functional analysis of U5 snRNA in cis-spliceosomes has provided support for this model, and data from nematode and trypanosome splicing systems suggest that U5 or a U5-like snRNA performs a similar role in trans-splicing.  相似文献   

19.
C. elegans snRNAs: a model for U4/U6 base pairing.   总被引:5,自引:3,他引:2       下载免费PDF全文
  相似文献   

20.
Rds3p is a well-conserved 12-kDa protein with five CxxC zinc fingers that has been implicated in the activation of certain drug transport genes and in the pre-mRNA splicing pathway. Here we show that Rds3p resides in the yeast spliceosome and is essential for splicing in vitro. Rds3p purified from yeast stably associates with at least five U2 snRNP proteins, Cus1p, Hsh49p, Hsh155p, Rse1p, and Ist3p/Snu17p, and with the Yra1p RNA export factor. A mutation upstream of the first Rds3p zinc finger causes the conditional release of the putative branchpoint nucleotide binding protein, Ist3p/Snu17p, and weakens Rse1p interaction with the Rds3p complex. The resultant U2 snRNP particle migrates exceptionally slowly in polyacrylamide gels, suggestive of a disorganized structure. U2 snRNPs depleted of Rds3p fail to form stable prespliceosomes, although U2 snRNA stability is not affected. Metabolic depletion of Yra1p blocks cell growth but not splicing, suggesting that Yra1p association with Rds3p relates to Yra1p's role in RNA trafficking. Together these data establish Rds3p as an essential component of the U2 snRNP SF3b complex and suggest a new link between the nuclear processes of pre-mRNA splicing and RNA export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号