共查询到20条相似文献,搜索用时 8 毫秒
1.
High-level transgene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes 下载免费PDF全文
Adeno-associated virus (AAV) vectors are being considered for in vivo applications of gene therapy in the treatment of a variety of disorders. This study evaluates the biology of second-generation vectors based on the novel serotypes AAV7 and AAV8 and containing self-complementary genomes in the nonhuman primate liver. Stable levels of transgene expression were achieved in cynomolgus macaques and suggest efficiencies at least 2 log higher than what could be achieved with AAV2 vectors using traditional single-stranded genomes. Analysis of DNAs from tissues revealed high levels of vector in the liver that appeared proportional to the relative amounts of transgene expression. 相似文献
2.
Santhanasabapathy Rajasekaran Jayashree Thatte Jayaprakash Periasamy Alok Javali Manjunath Jayaram Dwaipayan Sen Akshaya Krishnagopal Giridhara R. Jayandharan Ramkumar Sambasivan 《BMC biotechnology》2018,18(1):70
Background
Recombinant adeno-associated viruses (AAVs) are emerging as favoured transgene delivery vectors for both research applications and gene therapy. In this context, a thorough investigation of the potential of various AAV serotypes to transduce specific cell types is valuable. Here, we rigorously tested the infectivity of a number of AAV serotypes in murine testis by direct testicular injection.Results
We report the tropism of serotypes AAV2, 5, 8, 9 and AAVrh10 in mouse testis. We reveal unique infectivity of AAV2 and AAV9, which preferentially target intertubular testosterone-producing Leydig cells. Remarkably, AAV2 TM, a mutant for capsid designed to increase transduction, displayed a dramatic alteration in tropism; it infiltrated seminiferous tubules unlike wildtype AAV2 and transduced Sertoli cells. However, none of the AAVs tested infected spermatogonial cells.Conclusions
In spite of direct testicular injection, none of the tested AAVs appeared to infect sperm progenitors as assayed by reporter expression. This lends support to the current view that AAVs are safe gene-therapy vehicles. However, testing the presence of rAAV genomic DNA in germ cells is necessary to assess the risk of individual serotypes.3.
Production methods for gene transfer vectors based on adeno-associated virus serotypes 总被引:3,自引:0,他引:3
Grimm D 《Methods (San Diego, Calif.)》2002,28(2):146-157
Vectors derived from adeno-associated virus serotype 2 (AAV-2) represent a most promising tool for human gene transfer because these vectors are neither pathogenic nor toxic to the target cell, and allow long-term gene expression in a large variety of tissues. However, they are rather inefficient at infecting a number of clinically relevant cell types, and transduction by these vectors is likely hampered by neutralizing antibodies that are highly prevalent in the human population. Therefore, an increasing number of researchers are currently turning their attention to the five other serotypes of AAV, to try and develop these as novel vectors for human gene transfer, hoping to overcome the problems associated with AAV-2 vectors. Here I describe and discuss the methodology to produce these alternative AAV vectors in tissue culture. In detail, two strategies are compared that rely on transfection of cells in culture with either two or three plasmids, containing the AAV vector genome and encoding AAV and adenoviral helper functions. Either of these protocols can be used to package a recombinant AAV genome into capsids of its own serotype (generation of "real" serotypes) or to "cross-package" this vector DNA into capsids derived from another AAV serotype ("pseudotyping"). As these approaches are still in their early stages, the existing limitations of current technology are discussed, and possible further improvements proposed. 相似文献
4.
We describe the construction of two Escherichia coli hybrid plasmids, each of which contains the entire 4.7-kb DNA genome of the human parvovirus, adeno-associated virus (AAV) type 2. Because the AAV genome was inserted into the plasmid DNA using BglII linkers the entire virus genome can be recovered by in vitro cleavage of the purified recombinant plasmid. Transfection of these recombinant DNAs into an adenovirus-transformed human cell line in the presence of helper adenovirus resulted in efficient rescue and replication of the AAV genome and production of fully infectious virus particles. These AAV-plasmid recombinant DNA molecules should be useful both for site-specific mutagenesis of the viral genome and to study the potential of AAV as a eukaryotic vector. 相似文献
5.
Infection with wild-type adeno-associated virus (AAV) is common in humans, but very little is known about the in vivo biology of AAV. On a molecular level, it has been shown in cultured cells that AAV integrates in a site-specific manner on human chromosome 19, but this has never been demonstrated directly in infected human tissues. To that end, we tested 175 tissue samples for the presence of AAV DNA, and when present, examined the specific form of the viral DNA. AAV was detected in 7 of 101 tonsil-adenoid samples and in 2 of 74 other tissue samples (spleen and lung). In these nine samples, we were unable to detect AAV integration in the AAVS1 locus using a sensitive PCR assay designed to amplify specific viral-cellular DNA junctions. Additionally, we used a second complementary assay, linear amplification-mediated-PCR (LAM-PCR) to widen our search for integration events. Analysis of individual LAM-PCR products revealed that the AAV genomes were arranged predominantly in a head-to-tail array, with deletions and extensive rearrangements in the inverted terminal repeat sequences. A single AAV-cellular junction was identified from a tonsil sample and it mapped to a highly repetitive satellite DNA element on chromosome 1. Given these data, we entertained the possibility that instead of integrated forms, AAV genomes were present as extrachromosomal forms. We used a novel amplification assay (linear rolling-circle amplification) to show that the majority of wild-type AAV DNA existed as circular double-stranded episomes in our tissues. Thus, following naturally acquired infection, AAV DNA can persist mainly as circular episomes in human tissues. These findings are consistent with the circular episomal forms of recombinant AAV vectors that have been isolated and characterized from in vivo transduced tissues. 相似文献
6.
Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups 下载免费PDF全文
Rabinowitz JE Bowles DE Faust SM Ledford JG Cunningham SE Samulski RJ 《Journal of virology》2004,78(9):4421-4432
For all adeno-associated virus (AAV) serotypes, 60 monomers of the Vp1, Vp2, and Vp3 structural proteins assemble via an unknown mechanism to form an intact capsid. In an effort to better understand the properties of the capsid monomers and their role in viral entry and infection, we evaluated whether monomers from distinct serotypes can be mixed to form infectious particles with unique phenotypes. This transcapsidation approach consisted of the transfection of pairwise combinations of AAV serotype 1 to 5 helper plasmids to produce mosaic capsid recombinant AAV (rAAV). All ratios (19:1, 3:1, 1:1, 1:3, and 1:19) of these mixtures were able to replicate the green fluorescent protein transgene and to produce capsid proteins. A high-titer rAAV was obtained with mixtures that included either serotype 1, 2, or 3, whereas an rAAV of intermediate titer was obtained from serotype 5 mixtures. Only mixtures containing the AAV4 capsid exhibited reduced packaging capacity. The binding profiles of the mixed-virus preparations to either heparin sulfate (HS) or mucin agarose revealed that only AAV3-AAV5 mixtures at the 3:1 ratio exhibited duality in binding. All other mixtures displayed either an abrupt shift or a gradual alteration in the binding profile to the respective ligand upon increase of a capsid component that conferred either HS or mucin binding. The transduction of cell lines was used to further evaluate the phenotypes of these transcapsidated virions. Three transduction profiles were observed: (i) small to no change regardless of ratio, (ii) a gradual increase in transduction consistent with titration of a second capsid component, or (iii) an abrupt increase in transduction (threshold effect) dependent on the specific ratios used. Interestingly, an unexpected synergistic effect in transduction was observed when AAV1 helper constructs were combined with type 2 or type 3 recipient helpers. Further studies determined that at least two components contributed to this observed synergy: (i) heparin-mediated binding from AAV2 and (ii) an unidentified enhancement activity from AAV1 structural proteins. Using this procedure of mixing different AAV helper plasmids to generate "cross-dressed" AAV virions, we propose an additional means of classifying new AAV serotypes into subgroups based on functional approaches to analyze AAV capsid assembly, receptor-mediated binding, and virus trafficking. Exploitation of this approach in generating custom-designed AAV vectors should be of significant value to the field of gene therapy. 相似文献
7.
Sonntag F Köther K Schmidt K Weghofer M Raupp C Nieto K Kuck A Gerlach B Böttcher B Müller OJ Lux K Hörer M Kleinschmidt JA 《Journal of virology》2011,85(23):12686-12697
Adeno-associated virus type 2 (AAV2) capsid assembly requires the expression of a virally encoded assembly-activating protein (AAP). By providing AAP together with the capsid protein VP3, capsids are formed that are composed of VP3 only. Electron cryomicroscopy analysis of assembled VP3-only capsids revealed all characteristics of the wild-type AAV2 capsids. However, in contrast to capsids assembled from VP1, VP2, and VP3, the pores of VP3-only capsids were more restricted at the inside of the 5-fold symmetry axes, and globules could not be detected below the 2-fold symmetry axes. By comparing the capsid assembly of several AAV serotypes with AAP protein from AAV2 (AAP-2), we show that AAP-2 is able to efficiently stimulate capsid formation of VP3 derived from several serotypes, as demonstrated for AAV1, AAV2, AAV8, and AAV9. Capsid formation, by coexpressing AAV1-, AAV2-, or AAV5-VP3 with AAP-1, AAP-2, or AAP-5 revealed the ability of AAP-1 and AAP-2 to complement each other in AAV1 and AAV2 assembly, whereas for AAV5 assembly more specific conditions are required. Sequence alignment of predicted AAP proteins from the known AAV serotypes indicates a high degree of homology of all serotypes to AAP-2 with some divergence for AAP-4, AAP-5, AAP-11, and AAP-12. Immunolocalization of assembled capsids from different serotypes confirmed the preferred nucleolar localization of capsids, as observed for AAV2; however, AAV8 and AAV9 capsids could also be detected throughout the nucleus. Taken together, the data show that AAV capsid assembly of different AAV serotypes also requires the assistance of AAP proteins. 相似文献
8.
9.
Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer 总被引:12,自引:0,他引:12 下载免费PDF全文
Hildinger M Auricchio A Gao G Wang L Chirmule N Wilson JM 《Journal of virology》2001,75(13):6199-6203
Vectors based on hybrids consisting of adeno-associated virus types 2 (ITRs and Rep) and 5 (Cap) were evaluated for muscle-directed gene transfer (called AAV2/5). Evaluation in immune-competent mice revealed greater transduction efficacy with AAV2/5 than with AAV2 and no cross-neutralization between AAV2/5 and AAV2. Interestingly, we saw no immunologic evidence of previous exposure to AAV5 capsids in a large population of healthy human subjects. 相似文献
10.
11.
Gene delivery to the vasculature mediated by low-titre adeno-associated virus serotypes 1 and 5 总被引:1,自引:0,他引:1
Sen S Conroy S Hynes SO McMahon J O'Doherty A Bartlett JS Akhtar Y Adegbola T Connolly CE Sultan S Barry F Katusic ZS O'Brien T 《The journal of gene medicine》2008,10(2):143-151
BACKGROUND: Vascular gene therapy requires safe and efficient gene transfer in vivo. Recombinant adeno-associated virus (AAV) is a promising viral vector but its use in the vasculature has produced conflicting results and serotypes other than AAV2 have not been intensively studied. We investigated the efficiency of alternative AAV serotypes for vascular gene delivery in vitro and in vivo. METHODS: Vascular cell lines were transduced in vitro with AAV vectors. Rabbit carotid arteries were transduced with AAV1, 2 and 5 encoding enhanced green fluorescent protein (eGFP) ( approximately 1.4 x 10(9) DNAse-resistant particles (drp)). Gene transfer in vivo was assessed at 14 and 28 days. High-titre doses of AAV2 encoding beta-galactosidase in vivo were also studied. RESULTS: In vitro, transgene expression was not observed in endothelial cells using AAV2 whereas the use of serotypes 1 and 5 resulted in detectable levels of transgene expression. Coronary artery smooth muscle cells (CASMCs) transduced with AAV2 demonstrated higher levels of GFP expression than AAV1 or 5. Transgene expression in vivo was noted using low-titre AAV1 and AAV5 ( approximately 1.4 x 10(9) drp) in the media and adventitia. Only delivery of AAV1eGFP resulted in neointimal formation (3/7 vessels examined), with transgene expression noted in the neointima. Transgene expression with AAV2 was not detected in any layer of the blood vessel wall using low titre ( approximately 10(9) drp). However, high-titre ( approximately 10(11) drp) AAV2 resulted in transduction of cells in the media and adventitia but not the endothelium. CONCLUSIONS: AAV1 and AAV5 have advantages over AAV2 for vascular gene delivery at low titres. 相似文献
12.
Molecular cloning of adeno-associated virus variant genomes and generation of infectious virus by recombination in mammalian cells 总被引:16,自引:0,他引:16
Continued passage of the human parvovirus, adeno-associated virus (AAV), at high multiplicity of infection in human cells results in the accumulation of AAV particles containing variant genomes. We have analyzed the structure of individual variant AAV genomes by molecular cloning in the Escherichia coli plasmid, pBR328. Each of the AAV inserts in six individual recombinant plasmids contained a single internal deletion but in contrast to a previous model, the locations of the deletions were nonrandom. The molecular cloning protocol also generated recombinant plasmids containing the entire AAV2 DNA sequence which yielded infectious AAV particles when transfected into human 293 cells in the presence of helper adenovirus using a DEAE-transfection procedure. Infectious AAV genomes were also generated by recombination when cells were jointly transfected with a mixture of plasmids containing two different mutant AAV genomes. The efficiency of this recombination appear to be influenced by the degree of homology between the mutant AAV genomes. 相似文献
13.
Helicases not only catalyse the disruption of hydrogen bonding between complementary regions of nucleic acids, but also move along nucleic acid strands in a polar fashion. Here we show that the Rep52 and Rep40 proteins of adeno-associated virus type 2 (AAV-2) are required to translocate capsid-associated, single-stranded DNA genomes into preformed empty AAV-2 capsids, and that the DNA helicase function of Rep52/40 is essential for this process. Furthermore, DNase protection experiments suggest that insertion of AAV-2 genomes proceeds from the 3' end, which correlates with the 3'-->5' processivity demonstrated for the Rep52/40 helicase. A model is proposed in which capsid-immobilized helicase complexes act as molecular motors to 'pump' single-stranded DNA across the capsid boundary. 相似文献
14.
Isolation and characterization of defective simian virus 40 genomes which complement for infectivity. 下载免费PDF全文
A new variant of simian virus 40 (EL SV40), containing the complete viral DNA separated into two molecules, was isolated. One DNA species contains nearly all of the early (E) SV40 sequences, and the other DNA contains nearly all of the late (L) viral sequences. Each genome was encircled by reiterated viral origins and termini and migrated in agarose gels as covalently closed supercoiled circles. EL SV40 or its progenitor appears to have been generated in human A172 glioblastoma cells, as defective interfering genomes during acute lytic infections, but was selected during the establishment of persistently infected (PI) green monkey cells (TC-7). PI TC-7/SV40 cells contained EL SV40 as the predominant SV40 species. EL SV40 propagated efficiently and rapidly in BSC-1, another line of green monkey cells, where it also formed plaques. EL SV40 stocks generated in BSC-1 cells were shown to be free of wild-type SV40 by a number of criteria. E and L SV40 genomes were also cloned in the bacterial plasmid pBR322. When transfected into BSC-1 cell monolayers, only the combination of E and L genomes produced a lytic infection, followed by the synthesis of EL SV40. However, transfection with E SV40 DNA alone did produce T-antigen, although at reduced frequency. 相似文献
15.
Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors 总被引:12,自引:0,他引:12 下载免费PDF全文
We have investigated the infectious entry pathway of adeno-associated virus (AAV) and recombinant AAV vectors by assessing AAV-mediated gene transfer and by covalently conjugating fluorophores to AAV and monitoring entry by fluorescence microscopy. We examined AAV entry in HeLa cells and in HeLa cell lines which inducibly expressed a dominant interfering mutant of dynamin. The data demonstrate that AAV internalizes rapidly by standard receptor-mediated endocytosis from clathrin-coated pits (half-time <10 min). The lysosomotropic agents ammonium chloride and bafilomycin A(1) prevent AAV-mediated gene transfer when present during the first 30 min after the onset of endocytosis, indicating that AAV escapes from early endosomes yet requires an acidic environment for penetration into the cytosol. Following release from the endosome, AAV rapidly moves to the cell nucleus and accumulates perinuclearly beginning within 30 min after the onset of endocytosis. We present data indicating that escape of AAV from the endosome and trafficking of viral particles to the nucleus are unaffected by the presence of adenovirus, the primary helper virus for a productive AAV infection. Within 2 h, viral particles could be detected within the cell nucleus, suggesting that AAV enters the nucleus prior to uncoating. Interestingly, the majority of the intracellular virus particles remain in a stable perinuclear compartment even though gene expression from nuclear AAV genomes can be detected. This suggests that the process of nuclear entry is rate limiting or that AAV entry involves multiple pathways. Nevertheless, these data establish specific points in the AAV infectious entry process and have allowed the generation of a model for future expansion to specific cell types and AAV vector analysis in vivo. 相似文献
16.
A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes 下载免费PDF全文
During infection, adenovirus-associated virus (AAV) undergoes microtubule-dependent retrograde transport as part of a program of vectorial transport of viral genome to the nucleus. A microtubule binding assay was used to evaluate the hypothesis that cytoplasmic dynein mediates AAV interaction with microtubules. Binding of AAV serotype 2 (AAV2) was enhanced in a nucleotide-dependent manner by the presence of total cellular microtubule-associated proteins (MAPs) but not cytoplasmic dynein-depleted MAPs. Excess AAV2 capsid protein prevented microtubule binding by AAV serotypes 2, 5, and rh.10, as well as adenovirus serotype 5, indicating that similar binding sites are used by these viruses. 相似文献
17.
Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes 总被引:4,自引:0,他引:4 下载免费PDF全文
The relatively small package capacity (less than 5 kb) of adeno-associated virus (AAV) vectors has been effectively doubled with the development of dual-vector heterodimerization approaches. However, the efficiency of such dual-vector systems is limited not only by the extent to which intermolecular recombination occurs between two independent vector genomes, but also by the directional bias required for successful transgene reconstitution following concatemerization. In the present study, we sought to evaluate the mechanisms by which inverted terminal repeat (ITR) sequences mediate intermolecular recombination of AAV genomes, with the goal of engineering more efficient vectors for dual-vector trans-splicing approaches. To this end, we generated a novel AAV hybrid-ITR vector characterized by an AAV-2 and an AAV-5 ITR at opposite ends of the viral genome. This hybrid genome was efficiently packaged into either AAV-2 or AAV-5 capsids to generate infectious virions. Hybrid AV2:5 ITR viruses had a significantly lower capacity to form circular intermediates in infected cells than homologous AV2:2 and AV5:5 ITR vectors despite their similar capacity to express an encoded enhanced green fluorescent protein (EGFP) transgene. To examine whether the divergent ITR sequences contained within hybrid AV2:5 ITR vectors could direct intermolecular recombination in a tail-to-head fashion, we generated two hybrid ITR trans-splicing vectors (AV5:2LacZdonor and AV2:5LacZacceptor). Each delivered one exon of a beta-galactosidase minigene flanked by donor or acceptor splice sequences. These hybrid trans-splicing vectors were compared to homologous AV5:5 and AV2:2 trans-splicing vector sets for their ability to reconstitute beta-galactosidase gene expression. Results from this comparison demonstrated that hybrid ITR dual-vector sets had a significantly enhanced trans-splicing efficiency (6- to 10-fold, depending on the capsid serotype) compared to homologous ITR vectors. Molecular studies of viral genome structures suggest that hybrid ITR vectors provide more efficient directional recombination due to an increased abundance of linear-form genomes. These studies provide direct evidence for the importance of ITR sequences in directing intermolecular and intramolecular homologous recombination of AAV genomes. The use of hybrid ITR AAV vector genomes provides new strategies to manipulate viral genome conversion products and to direct intermolecular recombination events required for efficient dual-AAV vector reconstitution of the transgene. 相似文献
18.
Chng K Larsen SR Zhou S Wright JF Martiniello-Wilks R Rasko JE 《The journal of gene medicine》2007,9(1):22-32
Mesenchymal stromal cells (MSCs) show great promise for ex vivo gene and cell-mediated therapies. The immunophenotype and in vitro differentiation capacity of primary baboon MSCs was demonstrated to be near-identical to that observed in human MSCs. To optimize gene transfer efficiency, we compared the efficiency of serotypes 1, 2, 3, 4, 5, 6, and 8 of adeno-associated virus (AAV) vectors for their ability to mediate transduction of human and baboon MSCs. AAV serotype 2 vectors were the most efficient in transducing MSCs from humans and baboons. As a reference, human Ad293 cells were transduced with these seven AAV serotypes, and were found to have the highest transduction levels followed by baboon MSCs, and then human MSCs. The order of increasing transduction efficiency for the serotypes tested was similar for human and baboon MSCs, but was different for human Ad293 cells. The transduction efficiency of MSCs isolated from different individuals was comparable within the same species. We also demonstrated that baboon MSCs transduced with AAV serotype 2 vectors retain their potential to differentiate into adipocytes in vitro, and can incorporate into injured muscle tissue of NODSCID mice in vivo. We detected beta-galactosidase reporter gene expression in host muscle tissue for up to 9 weeks in this study, indicating engraftment of transduced baboon MSCs and sustained transgene expression in vivo. 相似文献
19.
Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly 下载免费PDF全文
Adeno-associated virus (AAV) is gaining momentum as a gene therapy vector for human applications. However, there remain impediments to the development of this virus as a vector. One of these is the incomplete understanding of the biology of the virus, including nuclear targeting of the incoming virion during initial infection, as well as assembly of progeny virions from structural components in the nucleus. Toward this end, we have identified four basic regions (BR) on the AAV2 capsid that represent possible nuclear localization sequence (NLS) motifs. Mutagenesis of BR1 ((120)QAKKRVL(126)) and BR2 ((140)PGKKRPV(146)) had minor effects on viral infectivity ( approximately 4- and approximately 10-fold, respectively), whereas BR3 ((166)PARKRLN(172)) and BR4 ((307)RPKRLN(312)) were found to be essential for infectivity and virion assembly, respectively. Mutagenesis of BR3, which is located in Vp1 and Vp2 capsid proteins, does not interfere with viral production or trafficking of intact AAV capsids to the nuclear periphery but does inhibit transfer of encapsidated DNA into the nucleus. Substitution of the canine parvovirus NLS rescued the BR3 mutant to wild-type (wt) levels, supporting the role of an AAV NLS motif. In addition, rAAV2 containing a mutant form of BR3 in Vp1 and a wt BR3 in Vp2 was found to be infectious, suggesting that the function of BR3 is redundant between Vp1 and Vp2 and that Vp2 may play a role in infectivity. Mutagenesis of BR4 was found to inhibit virion assembly in the nucleus of transfected cells. This affect was not completely due to the inefficient nuclear import of capsid subunits based on Western blot analysis. In fact, aberrant capsid foci were observed in the cytoplasm of transfected cells, compared to the wild type, suggesting a defect in early viral assembly or trafficking. Using three-dimensional structural analysis, the lysine- and arginine-to-asparagine change disrupts hydrogen bonding between these basic residues and adjacent beta strand glutamine residues that may prevent assembly of intact virions. Taken together, these data support that the BR4 domain is essential for virion assembly. Each BR was also found to be conserved in serotypes 1 to 11, suggesting that these regions are significant and function similarly in each serotype. This study establishes the importance of two BR motifs on the AAV2 capsid that are essential for infectivity and virion assembly. 相似文献
20.
Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants. 总被引:16,自引:64,他引:16 下载免费PDF全文
We constructed insertion and deletion mutants with mutations within the adeno-associated virus (AAV) sequences of the infectious recombinant plasmid pSM620. Studies of these mutants revealed at least three AAV phenotypes. Mutants with mutations between 11 and 42 map units were partially or completely defective for rescue and replication of the AAV sequences from the recombinant plasmids (rep mutants). The mutants could be complemented by mutants with replication-positive phenotypes. The protein(s) that is affected in rep mutants has not been identified, but the existence of the rep mutants proves that at least one AAV-coded protein is required for viral DNA replication. Also, the fact that one of the rep mutant mutations maps within the AAV intron suggests that the intron sequences code for part of a functional AAV protein. Mutants with mutations between 63 and 91 map units synthesized normal amounts of AAV duplex DNA but could not generate single-stranded virion DNA (cap mutants). The cap phenotype could be complemented by rep mutants and is probably due to a defect in the major AAV capsid protein, VP3. This suggests that a preformed capsid or precursor is required for the accumulation of single-stranded AAV progeny DNA. Mutants with mutations between 48 and 55 map units synthesized normal amounts of AAV single-stranded and duplex DNA but produced substantially lower yields of infectious virus particles than wild-type AAV (lip mutants). The lip phenotype is probably due to a defect in the minor capsid protein, VPI, and suggests the existence of an additional (as yet undiscovered) AAV mRNA. Evidence is also presented for recombination between mutant AAV genomes during lytic growth. 相似文献