首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Growth and extracellular enzyme production of Cellulomonas sp. ATCC 21399 on carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel), xylan, galactomannan and starch were compared. The bacteria grew poorly on CMC, whereas high cell densities were obtained on the other substrates. Growth on Avicel resulted in extracellular enzyme activities against CMC, Avicel, xylan, galactomannan and amylose. By contrast, growth on xylan, galactomannan and starch induced only the enzymes neccessary for the degradation of the growth substrate. Extracellular proteinase activity could be measured during growth on all substrates but CMC, and the possibility of proteolytic inactivation of some of the unstable enzymes (i.e. Avicelase and amylase) in discussed.  相似文献   

2.
Production of enzymes in the cellulolytic complex was determined in culture filtrates of six fungal isolates grown on chemically treated or gamma-irradiated bagasse. The enzymatic activities of the filtrates were determined by measurement of glucose release from cotton, filter paper, carboxymethylcellulose, cellobiose, and cellobiose octaacetate. Cultures grown on base-treated and gamma-irradiated plus acid-treated bagasse provided culture filtrates with the highest enzymatic activities whereas alpha-cellulose, untreated, and acid-treated bagasse were the poorest substrates for enzyme production. Filtrates of Trichoderma reesei QM 9414 yielded the highest cellulolytic activity in all test media. The largest accumulation of fungal-derived, extracellular protein was observed in media containing gamma-irradiated bagasse as the carbon substrate.  相似文献   

3.
以枯草芽胞杆菌CICC 20034为研究对象,对其分泌的高相对分子质量酯酶进行鉴定,并考察诱导剂对其活力的影响。结果表明:枯草芽胞杆菌CICC 20034可分泌一种相对分子质量为1.07×105的酯酶,经蛋白质质谱鉴定为乙酰木聚糖酯酶,单体分相对子质量为3.56×104。在发酵培养基中添加乙酸乙酯和木糖可以显著的促进乙酰木聚糖酯酶的活力,而三丁酸甘油酯和大分子诱导剂——木聚糖、玉米芯粉和壳聚糖对酯酶的活力几乎无促进作用。枯草芽胞杆菌CICC 20034以乙酸乙酯为诱导剂时最高比酶活为0.62 U/mL,为已知报道的野生细菌乙酰木聚糖酯酶的最高酯酶活力。  相似文献   

4.
5.
Penicillium verruculosum COKE4E is a fungal strain isolated from bituminous coal. The microorganism cultivated in a minimal medium supplemented with Avicel, carboxymethylcellulose, and oat spelt xylan produced cellulase enzymes as exhibiting carboxymethylcellulase (CMCase), Avicelase, xylanase, and cellobiosidase activities. In this study, the productivity of the extracellular enzymes in the strain was evaluated by using empty palm fruit bunch fiber (EPFBF), a lignocellulosic biomass, as a substrate for solid-state bioconversion. The highest cellulase activities were observed after 6 days of fermentation at pH 6.0 and 30 °C. The enzymes were secreted as cellulosomes for the degradation of EPFBF as a sole carbon source. Focused ion beam analysis showed that P. verruculosum COKE4E produced cellulolytic enzymes that were able to effectively biodegrade EPFBF during solid-state fermentation. In this process, 6.5 U of CMCase, 6.8 U of Avicelase, and 8.8 U of xylanase per gram of dry solid EPFBF were produced. These results demonstrate that EPFBF may be a potential raw material in solid-state fermentation for the production of cellulase enzymes to be used for biofuel production.  相似文献   

6.
A cellulase-hemicellulase complex was obtained from the culture supernatant of Phoma hibernica. It was purified by ammonium sulfate precipitation, column chromatography on diethylaminoethyl-Sephadex A-50 and Sephadex G-100. The preparation was capable of degrading carboxymethyl-cellulose, insoluble cellulose, xylan, galacto-, gluco-, and galactogluco-mannan. The distinct protein band obtained after isoelectrofocusing also showed activities towards these substrates. Optimum pH for cellulase and galactomannase activities was 4.5 and for xylanase activity 4.5–5.5. Tetranitromethane, urea and Fe3+ inhibited all the enzymatic activities of the complex. The preparation attacked carbohydrate polymers in different manners depending on the substrate. Cellulose was attacked in an exo-wise, xylan in an endowise manner. Nitrophenyl derivatives of carbohydrates were hydrolyzed slowly. It is suggested that the purified enzyme preparation is a complex most probably composed of subunits of different enzymatic activities.Abbreviations Used CM carboxymethyl - DEAE diethylaminoethyl - CMC carboxymethylcellulose  相似文献   

7.
The production of three extracellular enzymes during the solubilisation of ball-milled wheat straw by seven actinomycete strains, was examined. A general correlation was observed between the production of extracellular enzymes (xylanases, endoglucanases and peroxidases) and the formation of the solubilised lignocellulose intermediate product (APPL), with the thermophilic actinomycete Thermomonospora fusca BD25 exhibiting greatest extracellular enzyme activity and highest APPL production. Production of all three enzymes; endoxylanase, endoglucanase and peroxidase, and lignocellulose solubilisation, occured during primary growth with maximum activity at the end of the exponential phase (48–96 h). The inducibility and stability of extracellular enzymes from T. fusca were further characterised. When xylan replaced ball-milled wheat straw as the growth substrate, reduced enzyme activities were observed (28–96% reduction in enzyme activities), whereas carboxymethylcellulose was found to be a poor inducer of all three enzyme activities (80–100% reduction in enzyme activities). The pH and temperature optima for extracellular enzyme activities from T. fusca was found to be pH 7.0–8.0 and 60°C, respectively. Analysis of concentrated crude supernatant from T. fusca by native polyacrylamide gel electrophoresis revealed the existence of two non-haem peroxidases. The stability of the extracellular lignocellulose-degrading enzymes for T. fusca suggest their suitability for future biotechnological processes such as biobleaching.  相似文献   

8.
This study investigated the fungi diversity of fresh olive (Olea europaea L.) fruits, olive paste (crushed olives) and olive pomace (solid waste) and screened and quantified enzymatic activities with biotechnological applications. Fungi were randomly isolated from olive cultivars from Castilla La Mancha region (Spain). Identification included comparison of their polymerase chain reaction (PCR) amplicons of the ITS1-5.8S-ITS2 ribosomal DNA region, followed by nucleotide sequence analysis. Fourteen different species with DNA sequences of different similarities were identified, belonging to seven different genera (Aspergillus, Penicillium, Rhizomucor, Mucor, Rhizopus, Lichtheimia and Galactomyces). Aspergillus fumigatus, followed by Galactomyces geotrichum, Penicillium commune and Rhizomucor variabilis var. regularior were the most frequent species. Specific enzyme screening was assayed on agar plates, using cellobiose, carboxymethylcellulose (CMC), polygalacturonic acid and CaCl(2)/Tween 80 as substrates for β-glucosidase, carboxymethylcellulase (CMCase), polygalacturonase and lipase, respectively. Species exhibiting the best activities were: Aspergillus fumigatus (for β-glucosidase, CMCase and lipase); Rhizopus oryzae (for β-glucosidase and lipase); Rhizomucor variabilis (for β-glucosidase, CMCase and polygalacturonase); Mucor fragilis (β-glucosidase, CMCase and lipase); Galactomyces geotrichum (for β-glucosidase, polygalacturonase and lipase) and Penicillium commune and Penicillium crustosum (for lipase). The species that had shown the best enzymatic activities were grown on hemicellulose, cellulose and pectin and some activities were quantified (xylanase, cellulase, β-glucosidase and pectinase). An isolate of A. fumigatus and one of A. niger showed the best cellulase and xylanase activities, while no species presented good pectinase and β-glucosidase activities. The selected species with potential enzymatic activities could be used for future applications of industrial interest.  相似文献   

9.
The filamentous fungus Aspergillus versicolor produced large amounts of mycelial β-xylosidase activity when grown on xylan or xylose as the only carbon source. The presence of glucose drastically decreased the level of β-xylosidase activity, while cycloheximide prevented the induction of the enzymes by xylan or xylose. The β-xylosidases induced by xylose or xylan were purified by a simple protocol involving DEAE-cellulose chromatography and ammonium sulphate precipitation. The purified enzymes were acidic proteins, with carbohydrate contents of 21% for that induced by xylose, and 47% for that induced by xylan. Their apparent molecular masses, estimated by gel filtration, and optimal temperatures for β-xylosidase activities, were about 60 and 100 kDa, and 40 and 45 °C, respectively, for the enzymes induced by xylose and xylan. Xylose-induced β-xylosidase exhibited an optimum pH of 6.0, while that of the xylan-induced enzyme was 5.5. Both purified β-xylosidases exhibited also β-galactosidase, β-glucosidase and -arabinosidase activities. In addition to synthetic substrates, the enzymes hydrolysed xylobiose and xylotriose, suggesting a physiological role. KM values for p-nitrophenyl β- -xylopyranoside were 0.32 mM, for the xylose-induced β-xylosidase, and 0.19 mM for the xylan-induced one. Xylose competitively inhibited both β-xylosidases, with KI values of 5.3 and 2.0 mM, for the enzymes induced by xylose or xylan, respectively.  相似文献   

10.
Summary The kinetics and production of different extracellular enzyme activities were studied during growth of Cellulomonas sp. ATCC 21399 on 2% Avicel with different concentrations of M9 mineral medium. The lag phase and the doubling time increased with increasing ionic strength of the medium. The highest cell density was obtained during growth at 5 x M9 mineral medium and Cellulomonas grew well at this high salinity. The enzyme activities against carboxymethylcellulose and xylan increased with increasing concentration of M9 medium up to 5 x M9. By contrast, activities against microcrystalline cellulose (Avicel), galactomannan and amylose decreased with increasing concentration of M9 medium. The extracellular proteinase activity increased with increasing concentration of M9 medium, and it is possible that the lability of the cellulolytic and amylolytic enzymes may be due to their susceptibility to proteolytic inactivation by the extracellular proteinases.  相似文献   

11.
The Streptomyces spp. are notorious plant biomass decomposers in soil environments, but only few strains were biochemically and genetically characterized. Here, we employed functional screening along with genomic sequencing for identification of novel lignocellulolytic Streptomyces strains. Streptomyces strains isolated from soil were functional screened based on their cellulolytic and hemicellulolytic capacities by enzymatic plate assays containing carboxymethylcellulose (CMC) and beechwood xylan as sole carbon source. Subsequently, genomes of Streptomyces strains were sequenced, annotated, and interpreted to correlate their genetic contents with biochemical properties. Among the 80 bacterial isolates that were screened for enzymatic activity, two Streptomyces strains (named as F1 and F7) exhiting higher endoglucanase and endoxylanase activities were selected for biochemical and genomic characterization. After cultivation on steam-pretreated sugarcane bagasse-based medium, the supernatant of the strains F1 and F7 exhibited enzymatic activity against different substrates, such as arabinan, rye arabinoxylan, β-glucan, starch, CMC, xylan, and chitin. Furthermore, strain F7 was able to degrade pectin, mannan, and lichenan. The genomic analysis of both strains revealed a diversity of carbohydrate-active enzymes. The F1 and F7 genomes encode 33 and 44 different types of glycosyl hydrolases families, respectively. Moreover, the genomic analysis also identified genes related to degradation of lignin-derived aromatic compounds. Collectively, the study revealed two novel Streptomyces strains and further insights on the degradation capability of lignocellulolytic bacteria, from which a number of technologies can arise, such as saccharification processes.  相似文献   

12.
Various nitrogen and carbon sources, as well as natural products, were examined as inducers of the production of amylases, proteases and pectinases by A. niger C. A. niger C grown on wheat bran extract medium provided culture supernatants with the highest enzymatic activities. Some culture conditions, e.g. pH, medium temperature and time period of cultivation, were optimalized to improve the growth and enzymes biosynthesis by A. niger C.  相似文献   

13.
Degradation of xylan requires several enzymes. Two chimeric enzymes, xyln-ara and xyln-xylo, were constructed by linking the catalytic portion of a xylanase (xyln) to either an arabinofuranosidase (ara) or a xylosidase (xylo) with a flexible peptide linker. The recombinant parental enzymes and chimeras were produced in E. coli at high levels and purified for characterization of their enzymatic and kinetic properties as well as activities on natural substrates. The chimeras closely resemble the parental enzymes or their mixtures with regard to protein properties. They share similar temperature profiles and have similar catalytic efficiencies as the parental enzymes when assayed using substrates 4-nitrophenyl-alpha-L-arabinofuranoside or 2-nitrophenyl- beta-D-xylopyranoside. The chimeras also show unique enzymatic characteristics. In xylanase activity assays using Remazol Brilliant Blue-xylan, while the parental xylanase has a pH optimum of pH 8, the chimeras showed shifted pH optima as a consequence of significantly increased activity at pH 6 (the optimal pH for ara and xylo). Both chimeras exhibited additive effects of the parental enzymes when assayed at wide ranges of pH and temperatures. The xyln-xylo chimera had the same activities as the xyln/xylo mixture in hydrolyzing the natural substrates oat spelt xylan and wheat arabinoxylan. Compared to the xyln/ara mixture, the xyln-ara chimera released the same amounts of xylose from oat spelt xylan and approximately 30% more from wheat arabinoxylan at pH 6. Our results demonstrate the feasibility and advantages of generating bifunctional enzymes for the improvement of xylan bioconversion.  相似文献   

14.
A series of compounds structurally related to xylan and 1,4-beta-xylobiose were tested as inducers of the xylan-degrading enzyme system of Cryptococcus albidus. Washed, glucose-grown cells were incubated with alpha- and beta-linked xylobioses, 4-O-beta-D-xylopyranosyl-L-arabinopyranose, 3-O-beta-D-xylopyranosyl-xylobiose, 6-O-beta-D-xylopyranosyl-cellobiose, cellobiose, and methyl beta-D-xylopyranoside. All alpha-xylobioses and cellobiose were inactive as inducers of the xylan-degrading enzyme system. Other compounds served as inducers of varying efficiency, depending on their concentration in the induction medium and the time of incubation of cells. The most rapid response of the cells, i.e., the shortest induction period of beta-xyloside permease, beta-xylosidase (EC 3.2.1.37), and beta-xylanase (EC 3.2.1.8), was observed with 1,4-beta-xylobiose, which was the most efficient inducer at low concentrations (0.1 to 0.2 mM). At higher concentrations (2 to 10 mM) and after long incubations, the highest enzyme yields were obtained with 1,2-beta-xylobiose. The results represent a new example of efficient induction of polysaccharide-degrading enzyme systems by positional isomers of dimers derived from the polysaccharide.  相似文献   

15.
Abstract A gene library of a newly isolated Cellulomonas sp. strain was constructed in Escherichia coli and clones were screened for endoglucanase activity using dye-labelled carboxymethylcellulose. Seventeen clones were isolated that carried DNA inserts coding for endoglucanase enzymes. Of the 17 clones, one carrying the gene cegA , was further characterized. The recombinant endoglucanase was purified by FPLC. The endoglucanase was active against carboxymethylcellulose, lichenin and also degraded crystalline cellulose and birchwood xylan. The molecular mass of the enzyme (36 kDa), and its pH (7.4) and temperature (35 °C) optima were determined.  相似文献   

16.
AIMS: To determine the effect of environmental conditions on the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and to assess the potential use of these enzymes in the hydrolysis of lignocellulose material. METHODS AND RESULTS: The production of extracellular lignocellulose-degrading enzymes, endoxylanase, endoglucanase and peroxidase during the growth of Streptomyces sp. F2621 in basal salts-yeast extract medium containing different carbon sources and the effect of a number of environmental parameters (e.g. carbon sources and concentrations, pH and temperature) were investigated. The highest endoxylanase (22.41 U ml(-1)) and peroxidase (0.58 U ml(-1)) activities were obtained after 2-4 days of incubation at 30 degrees C in a basal salts medium containing 0.4% (w/v) oat spelt xylan and 0.6% (w/v) yeast extract, corresponding to C : N ratio of 6 : 1. Cell-free extracellular enzyme preparations from the strain were capable of releasing both sugar and aromatic compounds during incubation with eucalyptus paper pulp, straw and xylan. Overall, 9.3% hydrolysis of xylan occurred after 24-h incubation. However the rates of hydrolysis of paper pulp and straw were approximately twofold less than xylan hydrolysis, although the total percentage hydrolysis of available substrate (24.5% and 16.3%, respectively) was greater than xylan hydrolysis. CONCLUSIONS: The high levels of enzyme production achieved under batch cultivation conditions, coupled with no significant production of endoglucanase during the growth phase of organism and the release of both sugar and aromatic compounds from paper pulp and straw signify the suitability for these enzymes for industrial applications such as pulp and paper production. SIGNIFICANCE AND IMPACT OF THE STUDY: The results highlight the environmental conditions for the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and suggest the use of streptomycetes and/or their enzymes in industrial processes.  相似文献   

17.
Cellulase production by Aureobasidium pullulans from the temperate regions has remained speculative, with most studies reporting no activity at all. In the current study, tropical isolates from diverse sources were screened for cellulase production. Isolates were grown on a synthetic medium containing cell walls of Msasa tree (Brachystegia sp.) as the sole carbon source, and their cellulolytic activities were measured using carboxymethyl cellulose and alpha-cellulose as substrates. All isolates studied produced carboxymethyl cellulase (endoglucanase) and alpha-cellulase (exoglucanase) activity. Endoglucanase-specific activities of ten selected isolates ranged from 2.375 to 12.884 micromol glucose.(mg protein)-1.h-1, while activities on alpha-cellulose (exoglucanase activity) ranged from 0.293 to 22.442 micromol glucose.(mg protein)-1.day-1. Carboxymethyl cellulose induced the highest cellulase activity in the selected isolates, while the isolates showed variable responses to nitrogen sources. The current study indicates that some isolates of A. pullulans of tropical origin produce significant extracellular cellulolytic activity and that crude cell walls may be good inducers of cellulolytic activity in A. pullulans.  相似文献   

18.
Schizophyllum commune produces phytase through solid-state fermentation using different agroindustrial residues. After optimization of phytase production, a maximal level of phytase (113.7 Units/gram of dry substrate) was obtained in wheat bran based medium containing 5% sucrose, 50% humidity, 7.5% of biomass at 33 °C pH 7.0 during 72 h and a 285% improvement in enzyme titre was achieved. Analysis of fermentation parameters profile for phytase production showed the highest productivity (1.466 Units/gram of dry substrate/hour) in 66 h of fermentation. Phytase has an optimal pH of 5.0, an optimal temperature of 50 °C and K (m) and V (max) values of 0.16 mM and 1.85 μmol mL(-1) min(-1), respectively. Phytase activity was stimulated essentially in the presence of K(+), Ca(2+), Mg(2+), Mn(2+), Zn(2+), Cu(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), acetate and citrate at concentrations of 1 mM. Phytase had the best shelf life when stored at a cooling temperature, maintaining 38% of its initial activity after 112 days of storage, and still presenting enzymatic activity after 125 days of storage. Stability studies of phytase performed in aqueous enzyme extracts showed satisfactory results using polyethyleneglycol 3350, carboxymethylcellulose, methylparaben, mannitol and benzoic acid in concentrations of 0.25, 0.025, 0.025, 0.25, and 0.0025%, respectively. PEG 3350 was shown to be the best stabilizing agent, resulting in 109% of phytase activity from the initial crude extract remaining activity in after 90 days.  相似文献   

19.
Butyrivibrio fibrisolvens NCFB 2249 formed xylan-degrading enzymes on a wide range of carbohydrate growth substrates. The specific activities of α-L-arabinofuranosidase and β-D-xylosidase were increased (up 20-fold) after growth on xylan or xylose-containing saccharides. Xylose was not an effective substrate for xylanase production although its formation was induced on xylobiose and higher DP xylose-containing saccharides. Acetyl esterase activity was also highest after growth on xylan. The synthesis of xylanase and β-xylosidase was repressed by glucose and hemicellulosic pentoses and although α-L-arabinofuranosidase formation was also subject to catabolite regulation, xylose did not repress its synthesis.  相似文献   

20.
Cellulase and xylanase activities in higher basidiomycetes.   总被引:1,自引:0,他引:1  
Extracellular carboxymethylcellulase, xylanase, beta-glucosidase, and beta-xylosidase activities of four cultures of higher basidial fungi were studied in relation to the source of carbon in the nutrient medium. It was shown that beta-glucosidases and beta-xylosidases of all basidiomycetes and cellulases and xylanases of Pholiota aurivella IBR437 and Gloeophyllum saepiarium IBR155, the causal agents of wood brown rot, are constitutive enzymes; however, their activities depend on the source of carbon in the growth medium. Cellulases and xylanases of Coriolus pubescens IBR663 and Lentinus tigrinus IBR100 degrading wood through white rot are inducible enzymes. The synthesis of cellulases and xylanases was induced upon fungal growth on media containing crystalline cellulose and plant raw materials; carboxymethylcellulose and xylan were less effective. The induction of C. pubescens IBR663 cellulase and xylanase was observed when avicel was added to the culture growing on a mannitol-containing medium. Glucose at a concentration of 0.2-0.8% caused catabolite repression of C. pubescens IBR663 cellulase and xylanase. After utilization of glucose, leading to a decrease in its concentration below 0.1%, the synthesis of enzymes was resumed. These data indicate that the synthesis of cellulases and xylanases in the examined macromycetes is under common regulatory control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号