首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chymotrypsin and trypsin inhibitors persist throughout all developmental instars of Aedes aegypti. After a blood meal, inhibitor activity against chymotrypsin was more than double that of sugar-fed females, but only weak activity was detected in midguts where proteinase inhibitors has been thought to regulate proteinases during blood digestion. A fourfold increase in the ratio of abdominal/thoracic inhibitor activity after the blood meal strongly suggested that fat body, or other abdominal tissues, represent the major source of inhibitor. Chymotrypsin inhibitor activity was deposited in maturing oocytes. Similar results were obtained with blood-fed Anopheles albimanus. Chymotrypsin inhibitor was active against different mosquito proteinases and against bovine α-chymotrypsin and trypsin, but not against subtilisin, pancreatic elastase, or fungal proteases; chymotrypsin inhibitors did not interfere with bacterial growth. The hypothesis on the regulation of blood digestion through the action of proteinase inhibitors during the gonotrophic cycle was abandoned and its involvement in the phenoloxidase cascade in the mosquito egg chorion is suggested instead. Arch. Insect Biochem. Physiol. 36:315–333, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.  相似文献   

3.
Degradation of elastin by a cysteine proteinase from Staphylococcus aureus   总被引:3,自引:0,他引:3  
Staphylococcus aureus is known to produce three very active extracellular proteinases. One of these enzymes, a cysteine proteinase, after purification to homogeneity was found to degrade insoluble bovine lung elastin at a rate comparable to human neutrophil elastase. This enzyme had no detectable activity against a range of synthetic substrates normally utilized by elastase, chymotrypsin, or trypsin-like proteinases. However, it did hydrolyze the synthetic substrate carbobenzoxy-phenylalanyl-leucyl-glutamyl-p-nitroanilide (Km = 0.5 mM, kcat = 0.16 s-1). The proteolytic activity of the cysteine proteinase was rapidly and efficiently inhibited by alpha 2-macroglobulin and also by the cysteine-specific inhibitor rat T-kininogen (Ki = 5.2 X 10(-7) M). Human kininogens, however, did not inhibit. Human plasma apparently contains other inhibitors of this enzyme, since plasma depleted of alpha 2-macroglobulin retained significant inhibitory capacity. The elastolytic activity of this S. aureus proteinase and its lack of control by human kininogens or cystatin C may explain some of the connective tissue destruction seen in bacterial infections due to this and related organisms such as may occur in septicemia, septic arthritis, and otitis.  相似文献   

4.
Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.  相似文献   

5.
The midgut proteinase activities were characterized from the keratinolytic larvae of two lepidopterans, Hofmannophila pseudospretella (Stainton) (Oecophoridae) and Tineola bisselliella (Hummel) (Tineidae), and one coleopteran, Anthrenocerus australis (Hope) (Dermestidae). The major endopeptidase activities, characterized using specific enzyme inhibitors, were serine proteinases with hydrolytic activity against N-benzoyl-DL-arginine-p-nitroanilide and against N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-leucine-p-nitroanilide. No significant levels of metalloendopeptidase or cysteine endopeptidase activities were detected. Aminopeptidase activity was present in all larvae. The enzyme levels and properties of the two moth larvae were similar to each other and to those of phytophagous lepidopteran larvae but different from those of the beetle larva. Whereas only a limited number of serine proteinase inhibitors inhibited the midgut proteolysis of the lepidopteran larvae, most inhibitors inhibited the midgut proteolysis of the beetle larva. © 1994 Wiley-Liss, Inc.  相似文献   

6.
7.
The gene PKPI-B10 [AF536175] encoding in potato (Solanum tuberosum L., cv. Istrinskii) a Kunitz-type protein inhibitor of proteinases (PKPI) has been cloned into the pET23a vector and then expressed in Escherichia coli. The recombinant protein PKPI-B10 obtained as inclusion bodies was denatured, separated from admixtures by ion-exchange fast protein liquid chromatography (FPLC) on MonoQ under denaturing conditions, and renatured. The native protein was additionally purified by ion-exchange FPLC on DEAE-Toyopearl. The PKPI-B10 protein effectively inhibits the activity of trypsin, significantly weaker suppresses the activity of chymotrypsin, and has no effect on other serine proteinases: human leukocyte elastase, subtilisin Carlsberg, and proteinase K, and also the plant cysteine proteinase papain.  相似文献   

8.
A giant taro proteinase inhibitor (GTPI) cDNA was expressed in transgenic tobacco using three different gene constructs. The highest expression level obtained was ca. 0.3% of total soluble protein when the cDNA was driven by the Arabidopsis rbcS ats1 promoter. Repeated feeding trials with Helicoverpa armigera larvae fed on clonally derived T0 and T1 plants expressing GTPI demonstrated that, relative to those fed on control plants, some growth inhibition (22–40%) occurs, but there was no increase in larval mortality. Proteinase activities of larvae fed on GTPI-expressing tobacco or GTPI-containing diet were examined to monitor the spectrum of digestive proteinases in the midgut. Total proteinase activity was reduced by 13%, but GTPI-insensitive proteinase activity was increased by up to 17%. Trypsin was inhibited by 58%, but chymotrypsin and elastase were increased by 26% and 16% respectively. These results point to an adaptive mechanism in this insect that elevates the levels of other classes of proteinases to compensate for the trypsin activity inhibited by dietary proteinase inhibitors.  相似文献   

9.
Chilo suppressalis is a key constraint on production of rice. The current research was conducted to study the types of digestive proteases in the larval midgut of C. suppressalis. It was found that activity of total digestive proteases increased from the first to the fifth larval instars, which showed different nutritional requirements. Four types of proteinases and two types of exopeptidase were identified so that their activities from the highest to the lowest activities is trypsin‐like, chymotrypsin‐like and elastase for proteinases, and amino and carboxypeptidases for exopeptidases. Meanwhile, just one type of cysteine protease, cathepsin D, was determined in the fourth and fifth instar larvae. The optimal pH for activity of total protease was found to be pH 9–10 and optimal temperature was observed to be 35–40°C, where there was the highest proteolytic activity. Some specific inhibitors of proteases including PMSF, TLCK, TPCK, DTT, E‐64, cystatin, phenanthroline and EDTA were used to confirm the types of proteases in the midgut of C. suppressalis.  相似文献   

10.
Protease inhibitors play an important role in host plant defence against herbivores. However, insects have the ability to elevate the production of proteinases or resort to production of a diverse array of proteinases to offset the effect of proteinase inhibitors. Therefore, we studied the inhibition of pro‐proteinase(s) activation in the midgut of the polyphagous pest Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in response to protease inhibitors to develop appropriate strategies for the control of this pest. Gelatin coating present on X‐ray film was used as a substrate to detect electrophoretically separated pro‐proteinases and proteinases of H. armigera gut extract on native‐ and sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. Six activated pro‐proteinase bands were detected in H. armigera gut lumen, which were partially purified and characterized using substrate assays. Activated H. armigera midgut pro‐proteinase(s) showed activity maxima at pH 8 and 10, and exhibited optimal activity at 40 °C. The activation of H. armigera gut pro‐proteinase isoforms was observed in the fraction eluted on benzamidine‐sepharose 4B column. Purification and substrate assay studies revealed that 23–70 kDa polypeptides were likely the trypsin/chymotrypsin‐like pro‐proteinases. Larvae of H. armigera fed on a cocktail of synthetic inhibitors (antipain, aprotinin, leupeptin, and pefabloc) showed maximum activation of pro‐proteinases compared with the larvae fed on individual inhibitors. The implications of these results for developing plants expressing proteinase inhibitors for conferring resistance to H. armigera are discussed.  相似文献   

11.
The major proteinase activities in the larval midgut of a common poplar tree borer, Anoplophora glabripennis, were characterised. Overall digestive capacity, as measured by casein hydrolysis, showed a pH optimum between 10 and 11.5, suggestive of serine endopeptidase activity. Trypsin, chymotrypsin, and chymotrypsin-like activities were detected using specific p-nitroanilide synthetic substrates and by use of specific serine endopeptidase inhibitors. These activities also showed pH optima in the extreme alkaline range. The absence of cysteine, aspartic, and metallo-endopeptidases were confirmed using class specific proteinase inhibitors. The dominant exopeptidase in the midgut is leucine aminopeptidase with a pH optimum of 7–9. Carboxypeptidase a and b activity were barely detectable. A large range of serine endopeptidase inhibitors were screened and were found to vary widely in their ability to inhibit casein hydrolysis. Potato proteinase inhibitor 1 (a chymotrypsin inhibitor) and wheat-germ trypsin inhibitor 1 inhibited particularly effectively in tandem and represent possible candidates for gene transformation to produce plants tolerant to this pest. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Increasing levels of inhibitors that target cysteine and/or serine proteinases were fed to Tribolium castaneum larvae, and the properties of digestive proteinases were compared in vitro. Cysteine proteinases were the major digestive proteinase class in control larvae, and serine proteinase activity was minor. Dietary serine proteinase inhibitors had minimal effects on either the developmental time or proteolytic activity of T. castaneum larvae. However, when larvae ingested cysteine proteinase inhibitors, there was a dramatic shift from primarily cysteine proteinases to serine proteinases in the proteinase profile of the midgut. Moreover, a combination of cysteine and serine proteinase inhibitors in the diet prevented this shift from cysteine proteinase-based digestion to serine proteinase-based digestion, and there was a corresponding substantial retardation in growth. These data suggest that the synergistic inhibitory effect of a combination of cysteine and serine proteinase inhibitors in the diet of T. castaneum larvae on midgut proteolytic activity and beetle developmental time is achieved through the prevention of the adaptive proteolytic response to overcome the activity of either type of inhibitor.  相似文献   

13.
《Insect Biochemistry》1990,20(2):157-164
The major proteases of the black field cricket, Telleogryllus commodus, digestive system have been identified, partially purified and characterized. Classification of proteases into different classes of endo- and exopeptidases was made on the ability to hydrolyse specific synthetic substrates, pH optima and their interaction with a range of specific chemical and proteinaceous inhibitors. The major activities detected were trypsin, elastase, an uncharacterized proteinase (proteinase Tc), leucine aminopeptidase and carboxypeptidases A and B. Chymotrypsin activity was very low and neither cysteine endopeptidase nor metalloendopepitidase activities were found. Elastase is a newly discovered protease activity for insects.Trypsin, elastase and proteinase Tc have molecular weights of 24,300, 19,500 and 23,600, respectively; show alkaline pH optima and chemical inhibition indicative of serine endopeptidases; and interact most strongly with their characteristic class of proteinaceous inhibitors. Elastase and proteinase Tc are inhibited by a very similar spectrum of specific inhibitors, but the latter lacks activity against all specific synthetic substrates tested. Leucine aminopeptidase and carboxypeptidase A have molecular weights of 94,000 and 39,700, respectively, and show optimum activity at pH 8 and pH 9, respectively.The equilibrium dissociation constants for trypsin, elastase and proteinase Tc with 25 serine proteinase inhibitors were measured. Values spanning a 1000-fold range were obtained in each case.  相似文献   

14.
Three different serine proteinase inhibitors were isolated from rat serum and purified to apparent homogeneity. One of the inhibitors appears to be homologous to alpha 1-proteinase inhibitor isolated from man and other species, but the other two, designated rat proteinase inhibitor I and rat proteinase inhibitor II, seem to have no human counterpart. alpha 1-Proteinase inhibitor (Mr 55000) inhibits trypsin, chymotrypsin and elastase, the three serine proteinases tested. Rat proteinase inhibitor I (Mr 66000) is active towards trypsin and chymotrypsin, but is inactive towards elastase. Rat proteinase inhibitor II (Mr 65000) is an effective inhibitor of trypsin only. Their contributions to the trypsin-inhibitory capacity of rat serum are about 68, 14 and 18% for alpha 1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor II respectively.  相似文献   

15.
Intact, thioglycollate-stimulated murine macrophages cultured on an insoluble [3H]-elastin substratum progressively hydrolysed the elastin. Cell lysates had little activity. We compared the effect of various proteinase inhibitors on elastinolysis by either live cells or cell-free, elastase-rich conditioned medium. Only known inhibitors of macrophage elastase blocked the activity of elastase-rich cell-conditioned medium whereas inhibitors of cathepsin B also suppressed intact cell activity. Serum proteinase inhibitors blocked cell-derived soluble elastase activity but not intact cell elastolytic activity. We also observed that plasminogen added to the cell cultures markedly increased elastinolysis by live macrophages or cell-free elastase-rich medium. Purified plasmin alone had no measurable effect on native elastin. Additional experiments indicated that the plasmin enhancement was due to elastin-dependent activation of latent macrophage elastase. These results indicate that live macrophage elastinolysis is a co-operative process involving multiple proteinases, especially a cysteine proteinase(s) and elastase. Plasmin may be a physiological activator of latent macrophage elastase.  相似文献   

16.
Seeds of 32 species selected from two of the four major groups of gymnosperms, the ancient Cycadales and the economically important Coniferales, were analysed for inhibitors (I) of the serine proteinases trypsin (T), chymotrypsin (C), subtilisin (S) and elastase (E) using isoelectric focusing (IEF) combined with gelatin replicas. Subtilisin inhibitors were detected in 17 species, being particularly active in the Cycadales. Several species of the genera Cephalotaxus, Pseudotsuga and Cycas contained inhibitors active against elastase while strong CSTIs and CSIs were also present in Cycas pectinata and C. siamensis. No inhibitors were detected in seeds of Chamaecyparis, Thuja, Abies, Larix, Picea and Pinus spp. Serine proteinase inhibitors were purified from seeds of C. siamensis by affinity chromatography using trypsin and chymotrypsin, IEF and SDS-PAGE. Several CSTI components with Mr ranging from 4000 to 18,000 were partially sequenced using Edman degradation and mass spectrometry. Most of the sequences were similar to a hypothetical protein encoded by an mRNA from sporophylls of C. rumphii which in turn was similar to Kunitz-type proteinase inhibitors from flowering plants. Analysis of expressed sequence tag (EST) databases confirmed the presence of mRNAs encoding Kunitz-type inhibitors in the Cycadales and Coniferales and also demonstrated their presence in a third major group of gymnosperms, the Ginkgoales. This is the first report of Kunitz-type serine proteinase inhibitors from plants other than Angiosperms.  相似文献   

17.
Physicochemical and functional characteristics of plant protein proteinase inhibitors as antistress biopolymers were studied to determine the mechanisms for plant resistance to phytopathogens and to obtain disease-resistant cereal and leguminous cultures. The activity of trypsin, chymotrypsin, and subtilisin inhibitors varied in monocotyledonous and dicotyledonous cultures. Study varieties of leguminous and cereal cultures were shown to contain endogenous inhibitors specific to proteinases of phytopathogenic fungi Fusarium, Colletotrichum, Helminthosporium, and Botrytis. These inhibitors were characterized by species specificity and variety specificity. Protease inhibitors from buckwheat seeds inhibited proteases of fungal pathogens and suppressed germination of spores and growth of the fungal mycelium. Our results suggest that proteinaceous inhibitors of proteinases are involved in the protective reaction of plants under stress conditions.__________Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 4, 2005, pp. 392–396.Original Russian Text Copyright © 2005 by Dunaevskii, Tsybina, Belyakova, Domash, Sharpio, Zabreiko, Belozerskii.  相似文献   

18.
Phytocystatins are plant cysteine proteinase inhibitors that regulate endogenous and heterologous cysteine proteinases of the papain family. A cDNA encoding the phytocystatin BrCYS1 (Brassica rapa cysteine proteinase inhibitor 1 ) has been isolated from Chinese cabbage (B. rapa subsp.pekinensis) flower buds. In order to explore the role of this inhibitory enzyme, tobacco plants (Nicotiana tabacum L. cv. Samson) containing altered amounts of phytocystatin were generated by over-expressingBrCYS1 cDNA in either the sense or the antisense configuration. The resulting plants hadin vitro enzyme inhibitory activities that were over 10% of those detected in wild type plants. The transgenic plants exhibited retarded seed germination and seedling growth and a reduced seed yield, whereas these properties were enhanced in antisense plants. These data suggest that BrCYS1 participates in the control of seed germination, post-germination and plant growth by regulating cysteine peptidase activity.  相似文献   

19.
The utilization of dietary proteins in crustaceans is facilitated by a set of peptide hydrolases which are often dominated by “trypsin-like” serine proteinases. As expected, the North Sea shrimps Crangon crangon and Crangon allmani showed in their midgut glands high proteolytic activities. However, the majority of animals lacked trypsin and chymotrypsin. Conversely, a minority of about 10% of the animals had elevated trypsin activities. The appearance of trypsin was neither related to the mode of feeding nor to the nutritive state of the animals. When present, trypsin was expressed in both species as a single isoform of apparently 20 kDa. The lack of serine proteinases was also confirmed by inhibitor assays. AEBSF, a serine proteinase inhibitor, slightly reduced total proteinase activity by less than 10%. In contrast E 64, a cysteine proteinase inhibitor, caused a reduction of more than 70% of total proteinase activity, indicating that a substantial share of proteolytic activity is caused by cysteine proteinases. Cathepsin L-like proteinases were identified as major cysteine proteinases.A comparison with the eucarid crustaceans Pandalus montagui, Pagurus bernhardus, Cancer pagurus and Euphausia superba showed a similar high level of total proteinase activity in all species. Trypsin, however, varied significantly between species showing lowest activities in Caridea and the highest activity in E. superba. E 64 suppressed total proteinase activity by more than 70% in Crangon species but not in C. pagurus and E. superba. In contrast, the serine proteinase inhibitor AEBSF had only little effect in Caridea but was most effective in P. bernhardus, C. pagurus and E. superba. The results may indicate different traits of food utilization strategies in some eucarid crustaceans. Caridea may express predominantly cysteine proteinase, while in Anomura, Brachyura and Euphausiacea, serine proteinases may prevail.  相似文献   

20.
The influence of proteinase inhibitors on the lipotropic effect of somatotropic (STH), adrenocorticotropic (ACTH) and beta-lipotropic (LPH) hormones in adipose tissue was studied in vitro. The effect of STH was found to be completely dependent on the activity of tissue serine proteinases of trypsin and chymotrypsin types. The effect of LPH partly depended on serine proteinases of chymotrypsin type, whereas that of ACTH--on chymotrypsin and carboxylic proteinases. The effects of all the three hormones were also manifested during lysosomal proteolysis. The protease-dependent inhibition was specific for polypeptide hormones and was unobserved in the lipotropic effect of adrenaline. The inhibiting effect of serine proteinase inhibitors on hormones pretreated with blood plasma or proteinases was much weaker than on untreated hormones. In adipose tissue the early insulin-like effect of STH, unlike the late lipotropic effect, was independent of proteolysis. It was assumed that primary proteolysis plays a role in the activation of polypeptide hormones which is necessary for the manifestation of the lipotropic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号