首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enamel hypoplasia (EH) is a deficiency in enamel thickness due to physiological insults that compromise ameloblast function during the secretory phase of amelogenesis. The prevalence of EH in the deciduous teeth of nonhuman primates is largely unknown. One exception is the recent discovery of EH in the deciduous teeth of extant great apes which exhibit significant differences in prevalence between genera (Lukacs, 1999 a, 2000 a, Am. J. phys. Anthrop.110, 351-363). EH in deciduous teeth of other primates, living and fossil, remain undocumented. This communication describes a "plane form" type of EH known as localized hypoplasia of primary canines (LHPC) (Skinner, 1986 a, Am. J. phys. Anthrop.69, 59-69) in early Miocene catarrhines from Kenya. Specimens were examined macroscopically, with a 10x hand lens and with a variable power (10-30x) binocular microscope. Fédération Dentaire International (FDI)/Defects of Dental Enamel (DDE) standards were employed in recognition and recording of enamel defects (Fédération Dentaire International, 1982, Int. Dent. J.32, 159-167; Clarkson, 1989, Adv. Dental Res.3, 104-109). Size, shape and location of defects were measured and recorded on an outline drawing of the tooth crown. The Kenya National Museum study sample includes six genera of early Miocene catarrhines (n=66 specimens, with n=80 teeth). Seven deciduous teeth were afflicted with EH, yielding an overall prevalence of 8.75%. Two taxa, Kalepithecus (n=1 deciduous canine) and Proconsul (n=3 deciduous canines), were affected with LHPC. Expression of LHPC in fossil catarrhines is consistent with the expression of EH observed in skeletal samples of extant great apes. This report establishes an approximately 17-23 Ma antiquity for EH among early catarrhines and suggests that the neonatal stage of ontogenetic development was sufficiently stressful physiologically to produce disruption in amelogenesis. These physiological stresses impacted neonates of fossil taxa with a wide range of adult body sizes, from large-bodied Proconsul major ( approximately 75 kg) to one of the smaller-bodied catarrhines, Kalepithecus ( approximately 5 kg).  相似文献   

2.
There have been numerous attempts to sex fossil specimens using the canine dentition. Whether focused on canine size or canine shape, most of these efforts share two deficiencies: lack of quantification of male-female differences in the adopted criteria and a failure to adequately explore among extant species the discriminatory power of these criteria. Here, canine shape indices relating to relative canine height, upper canine root/crown proportionality, and relative length of the lower canine mesial ridge were calculated for males and females of all species and subspecies of extant great apes and two species of gibbons. The accuracy of these indices for identifying the sex of the extant ape specimens was investigated through discriminant analysis and the use of bivariate plots of the two upper and two lower canine indices. The indices were found to be highly accurate in identifying the sex of great ape individuals, not only in single-species and subspecies samples but in mixed-species samples as well; assignment error rates were mostly between 0 and 4%. Accuracy was lowest in Pan (error rates as high as 15%) and highest in Pongo (one error). In most cases, error rates were lower in the upper canines. The effectiveness of these shape indices for sexing might be related to the degree of absolute canine size dimorphism; the indices did not effectively segregate males and females among minimally canine-dimorphic gibbons. The mixed-species results reveal that same-sex index values are remarkably concordant across great ape species, as are the patterns of spatial segregation of males and females in the bivariate plots. Results suggest that, while the indices can be used with some confidence to sex individual fossil specimens, their greatest utility will be for identifying the sex of groups of canines united by size and morphology. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The possibility that projecting maxillary canines interfere with either a «rotary chewing» form of molar occlusion or the lateral excursion of the mandible has been used to suggest two dietary (non-weapon) selection models for canine reduction in the earliest male humans. A third model explaining canine reduction is based on the idea that a projecting mandibular canine could interfere with its tip-to-tip occlusion with the maxillary lateral incisor. In this paper, these three mechanical models are critically reexamined in light of more recent studies of occlusion in extant primates, detailed observations of anterior tooth morphology and wear in Miocene to Recent anthropoids, cheek tooth microwear inA. afarensis, and the currently accepted phylogeny and fossil record of the great apes and man.  相似文献   

4.
The palatofacial morphology of Proconsul africanus, P. nyanzae, P. major and Sivapithecus meteai is compared to extant catarrhines. The early Miocene hominoids (Proconsul) are unlike modern great apes, but retain a primitive catarrhine pattern more similar to some extant cercopthecoids. By middle Miocene times the typical hominoid palatofacial morphology can be recognized in at least one species (S. meteai) and this corresponds to the evolution of the postcranium in which the hominoid pattern is also only recognizable by the middle Miocene.  相似文献   

5.
Laccopithecus robustus is a siamang-sized fossil ape from the Miocene site of Lufeng, China. The species is known from a partial cranium, numerous mandibles, and scores of isolated teeth. This species shows striking dental similarities to Pliopithecus from the Miocene of Europe and a number of cranial similarities to extant gibbons. Laccopithecus differs from extant gibbons and resembles other fossil and extant apes in showing marked sexual dimorphism in the size and shape of the canines and anterior lower premolars. Evidence for sexual differences in either the size or shape of other teeth is less clear. There is some evidence for a sexual size dimorphism based on the variability of molar teeth.  相似文献   

6.
胡荣  赵凌霞 《人类学学报》2012,31(4):371-380
釉面横纹的分布与数目可以反映牙齿生长发育的时间和速率变化, 在化石研究中能为复原个体生活史提供重要依据。本研究运用扫描电子显微镜观察华南化石猩猩门齿、犬齿釉面横纹分布与数目, 并估算门齿和犬齿牙冠形成时间, 结果如下: 牙冠从牙尖至牙颈方向釉面横纹分布密度有疏密变化, 牙尖釉面横纹密度小于10条/mm, 中间至牙颈釉面横纹密度较尖部增大, 大约10-15条/mm; 犬齿釉面横纹数目多于门齿, 雄性犬齿釉面横纹数目多于雌性; 根据釉面横纹计数及其生长周期的组织切片观察结果, 估算门齿牙冠形成时间大约为2.97-6.66年, 犬齿雄性长于雌性, 分别为6.25-11.31年和4.28-7.29年。与一些古猿、早期人类、现代人以及现生大猿比较, 华南化石猩猩釉面横纹整体密度稍大于南方古猿和傍人, 小于黑猩猩、大猩猩、现代人和禄丰古猿; 除侧门齿外, 华南化石猩猩釉面横纹数目明显多于南方古猿、傍人和现代人, 与大猩猩接近; 华南猩猩前部牙齿牙冠形成时间与现生大猿、禄丰古猿差别不大, 与现生猩猩最相近, 长于南方古猿和傍人。  相似文献   

7.
The large hominoid sample from the late Miocene site of Lufeng, China, has been variously claimed to contain either one or two species, but very few metric data in support of either position have been published. We calculate coefficients of variation for the dental remains both for the two presumed species and for the pooled sample as a whole using the summary statistics published by Wu & Oxnard (Wu & Oxnard: American Journal of Primatology 5:303–344, 1983a, Nature 306:258–260, 1983b). These are compared to the same measures of single-sex and combined-sex samples of extant hominoids. We also present metric characterizations of male and female canines of extant great apes, with which we evaluate the gender composition of the Lufeng canine sample. In a two-species alternative, the two presumed species have measures of variability and canine representation that are more compatible with single-sex samples representing males and females, respectively. The pooled dental sample has measures of variability within the ranges of single species of extant great apes. We conclude there is a single large hominoid species represented at Lufeng that is highly sexually dimorphic. The phylogenetic relationships of this species are briefly considered. It is generally primitive in craniodental morhpology and is unlikely to be a member of the Sivapithecus-Pongo clade.  相似文献   

8.
The early Miocene catarrhine fossil record of East Africa represents a diverse and extensive adaptive radiation. It is well accepted that these taxa encompass a dietary range similar to extant hominoids, in addition to some potentially novel dietary behaviour. There have been numerous attempts to infer diet for these taxa from patterns of dental allometry and incisor and molar microwear, however, morphometric analyses until now have been restricted to the post-canine dentition. It has already been demonstrated that given the key functional role of the incisors in pre-processing food items prior to mastication, there is a positive correlation between diet and incisal curvature (Deane, A.S., Kremer, E.P., Begun, D.R., 2005. A new approach to quantifying anatomical curvatures using High Resolution Polynomial Curve Fitting (HR-PCF). Am. J. Phys. Anthropol. 128(3), 630-638.; Deane, A.S., 2007. Inferring dietary behaviour for Miocene hominoids: A high-resolution morphometric approach to incisal crown curvature. Ph.D. Dissertation. The University of Toronto.). This study seeks to re-examine existing dietary hypotheses for large-bodied early Miocene fossil catarrhines by contrasting the incisal curvature for these taxa with comparative models derived from prior studies of the correlation between extant hominoid incisor curvature and feeding behaviour. Incisor curvature was quantified for 78 fossil incisors representing seven genera, and the results confirm that early Miocene fossil catarrhines represent a dietary continuum ranging from more folivorous (i.e., Rangwapithecus) to more frugivorous (i.e., Proconsul) diets, as well as novel dietary behaviours that are potentially similar to extant ceboids (i.e., Afropithecus). Additionally, early Miocene fossil catarrhine incisors are less curved than extant hominoid incisors, indicating a general pattern of increasing mesio-distal and labial curvature through time. This pattern of morphological shifting is consistent with the Red Queen Effect (Van Valen, L., 1973. A new evolutionary law. Evol. Theory 1, 1-30), which predicts that taxa that are removed from one another by geological time, although potentially having similar diets, may exhibit differing degrees of a similar dietary adaptation (i.e., differing degrees of incisal curvature).  相似文献   

9.
Polymorphic aspects of male anthropoid canines   总被引:1,自引:0,他引:1  
Interspecific variation in the architecture of male anthropoid maxillary canines is documented. Extant taxa are polymorphic, and most can be sorted into two major groupings based on quantitative measures of shape, distal edge sharpness, and interspecific changes in their linear dimensions (projection, mesiodistal length, and buccolingual breadth) relative to each other and to body mass (scaling). One group includes the great apes and ceboids; the other includes cercopithecoids and hylobatids. Statistically significant differences between these groups were found for canine shape, for trajectories of regressions for canine projection on canine length and canine breadth, and for canine projection and canine breadth relative to body mass. The data indicate that explantations of canine variation in male anthropoids must include a mechanical interpretation of form in addition to assessments of habitus, heritage, and body mass.  相似文献   

10.
Clarifying morphological variation among African and Eurasian hominoids during the Miocene is of particular importance for inferring the evolutionary history of humans and great apes. Among Miocene hominoids, Nakalipithecus and Ouranopithecus play an important role because of their similar dates on different continents. Here, we quantify the lower fourth deciduous premolar (dp4) inner morphology of extant and extinct hominoids using a method of morphometric mapping and examine the phylogenetic relationships between these two fossil taxa. Our data indicate that early Late Miocene apes represent a primitive state in general, whereas modern great apes and humans represent derived states. While Nakalipithecus and Ouranopithecus show similarity in dp4 morphology to a certain degree, the dp4 of Nakalipithecus retains primitive features and that of Ouranopithecus exhibits derived features. Phenotypic continuity among African ape fossils from Miocene to Plio-Pleistocene would support the African origin of African apes and humans (AAH). The results also suggest that Nakalipithecus could have belonged to a lineage from which the lineage of Ouranopithecus and the common ancestor of AAH subsequently derived.  相似文献   

11.
It has been suggested that patterns of craniodental variation in living hominids (Gorilla, Homo, Pan, and Pongo) may be useful for evaluating variation in fossil hominid assemblages. Using this approach, a fossil sample exhibiting a pattern of variation that deviates from one shared among living taxa would be regarded as taxonomically heterogeneous. Here we examine patterns of tooth crown size and shape variation in great apes and humans to determine 1) if these taxa share a pattern of dental variation, and 2) if such a pattern can reliably discriminate between samples that contain single species and those that contain multiple species. We use parametric and nonparametric correlation methods to establish the degree of pattern similarity among taxa, and randomization tests to assess their statistical significance. The results of this study show that extant hominids do not share a pattern of dental size variation, and thus these taxa cannot be used to generate expectations for patterns of size variation in fossil hominid species. The hominines (Gorilla, Homo, and Pan) do share a pattern of shape variation in the mandibular dentition; however, Pongo is distinct, and thus it is unclear which, if either, pattern should be expected in fossil hominids. Moreover, in this case, most combined-species samples exhibit patterns of shape variation that are similar to those for single hominine species samples. Thus, although a common pattern of shape variation is present in the mandibular dentition, it is not useful for recognizing taxonomically mixed paleontological samples.  相似文献   

12.
The first known fossil ape from the early-middle Miocene of Fejej, Ethiopia, is described here. The specimen, FJ-18SB-68, is a partial ulna from a locality dated by 40Ar/39Ar and paleomagnetic methods to a minimum age of 16.18 MYA. Compared to a variety of extant and fossil ulnae, FJ-18SB-68 is most similar to Turkanapithecus, Proconsul, and Pliopithecus, and appears to have been an arboreal quadruped with substantial forearm rotational mobility. Among the extant ulnae, canonical variates analysis successfully discriminates platyrrhines from catarrhines and within the latter, cercopithecoids from hominoids. Basal catarrhines (e.g., Aegyptopithecus) are platyrrhine-like in their morphology. Two basic trends appear to evolve from this generalized template: one with less mobile and more habitually pronated forearms, as seen in living and fossil cercopithecoids (including Victoriapithecus and Paracolobus), and another with greater forearm rotational mobility in fossil and modern hominoids. Primitive Miocene apes, including Proconsul, Turkanapithecus, and FJ-18SB-68, share with extant hominoids a more laterally positioned and laterally facing radial notch and an incipient trochlear keel. This morphology, along with a large insertion area for m. brachialis, suggests a departure from the more habitually pronated hand posture of monkeys and may indicate greater climbing abilities in these arboreally quadrupedal apes. Later Miocene apes, such as Oreopithecus and Dryopithecus share additional morphological features with hominoids, indicating considerable suspensory and climbing capabilities. Am J Phys Anthropol 105:257–277, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Sexual dimorphism is an important source of morphological variation, and species differences in dimorphism may be reflected in magnitude, pattern, or both. While the extant great apes are commonly used as a reference sample for distinguishing between sexual dimorphism and intertaxic variation in the fossil record, few studies have evaluated mandibular dimorphism in these taxa. In this study, percentage, degree, and pattern of mandibular dimorphism are evaluated in Pongo, Gorilla, and Pan. Mandibular dimorphism patterns are explored to determine the extent to which such patterns accurately track great ape phylogeny. Pattern stability is assessed to determine whether there are stable patterns of mandibular size and shape dimorphism that may be usefully applied to hominoid or hominid fossil species recognition studies. Finally, the established patterns of dimorphism are used to address recent debates surrounding great ape taxonomy. Results demonstrate that mandibular dimorphism is universally expressed in size, but only Pongo and Gorilla exhibit shape dimorphism. Pattern similarity tends to be greater between subspecies of the same species than between higher-order taxa, suggesting that within the great apes, there is a relationship between dimorphism pattern and phylogeny. However, this relationship is not exact, given that dimorphism patterns are weakly correlated between some closely related taxa, while great ape subspecies may be highly correlated with taxa belonging to other species or genera. Furthermore, dimorphism patterns are not significantly correlated between great ape genera, even between Gorilla and Pan. Dimorphism patterns are more stable in Gorilla and Pongo as compared to Pan, but there is little pattern stability between species or genera. Importantly, few variables differ significantly between taxa that simultaneously show consistently relatively low levels of dimorphism and low levels of variation within taxa. Combined, these findings indicate that mandibular dimorphism patterns can and do vary considerably, even among closely related species, and suggest that it would be difficult to employ great ape mandibular dimorphism patterns for purposes of distinguishing between intra- and interspecies variation in fossil samples. Finally, the degree of pattern similarity in mandibular dimorphism is lower than previously observed by others for craniofacial dimorphism. Thus, the possibility cannot be ruled out that patterns of craniofacial dimorphism in great apes may be associated with a stronger phylogenetic signal than are patterns of mandibular dimorphism.  相似文献   

14.
Three recently discovered faces of Aegyptopithecus zeuxis from the Oligocene Jebel Qatrani Formation of Egypt provide new information about the shape and variation of the facial cranium, the earliest preserved for a presumed forerunner of apes and humans. Although varying considerably in details of shape and proportion, the new finds and a skull found in 1966 all appear to be of males, a conclusion based in part on the development of temporal and sagittal crests and on the large size of upper canines or their sockets (female canines are much smaller). The snouts of the three new faces all are shorter and broader than that of the earlier found skull as reconstructed. As in most later species of Anthropoidea, variation between these specimens is high.Aegyptopithecus helps define the nature of the oldest Anthropoidea and generally most resembles later-occurring apes. Many features, both derived and shared primitive, link Aegyptopithecus, the large Miocene great apes of the Proconsul group, and modern great apes. That these shared features and proportions are not direct allometric consequences of body size is indicated by Aegyptopithecus' resemblance to the large apes and its many distinctions from similar-sized Hylobates.In Aegyptopithecus brain volume scales smaller than in later catarrhines relative to facial size, the ectotympanic tube is less developed and the premaxilla is more primitive than in later higher primates. In closure of orbits and conformation of forehead, face and dentition, Aegyptopithecus closely resembles higher primates and not prosimians. Taken together, its overall cranial and dental anatomy constitutes one of the most important connecting links in primate evolutionary history.  相似文献   

15.
The pattern of overall dental dimensions in over 900 teeth of ramapithecines from Lufeng in China is examined using frequency distribution histograms and fitted normal curves, and compared with data for extant hominoids. A prior study has demonstrated unequivocally that at least two groups of animals must have existed at Lufeng [Wu and Oxnard, 1983; Oxnard, 1983a]. The present investigation confirms this finding in more detail. In addition it shows that one fossil group possesses smaller teeth with a lesser degree of sexual dimorphism and approximately equal numbers of adult males and females, and the other possesses larger teeth with a rather larger degree of sexual dimorphism and a female-male ratio that may have approximated from as low as 2:1 to as high as 4:1. Comparisons of patterns of difference along the tooth row demonstrate that both these forms differ from modern apes in their sexual dimorphism, the smaller form being more like humans than the larger, which is more like apes, especially orangutans. Comparisons of the areas of the canine teeth with each of the other functional segments of the tooth row again show that the smaller form is basically similar to modern humans and that the larger resembles extant great apes. Comparisons of other functional dental areas seem to relate to dietary and masticatory functions. Thus the cutting areas are large relative to the chewing areas in omnivorous humans, whereas in the essentially vegetarian great apes this ratio is smaller. The smaller fossil resembles the human condition and may have been somewhat omnivorous; the larger one more resembles the apes and may have been somewhat more vegetarian. However, these comparisons also show that the way in which the larger form resembles the apes is associated with special development of the canines, which is different from that in any modern ape. Comparisons show that the canines in the larger form project far beyond the normal line of tooth crowns. Finally, comparisons show that canine sexual dimorphism in height is marked in the larger form. Neither of these last two features is true of the smaller fossil. These findings have implications for our understanding of the evolution of early pongids and hominids, and for the evolution of primate sexual dimorphisms and dental mechanisms.  相似文献   

16.
Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.  相似文献   

17.
Studies of the biostratigraphy and palaeoecology of fossil vertebrate assemblages require large samples of accurately identified specimens. Such analyses can be hampered by the inability to assign isolated and worn remains to specific taxa. Entoptychine gophers are a diverse group of burrowing rodents found in Oligo‐Miocene deposits of the western United States. In both entoptychines and their extant relatives the geomyines, diagnostic characters of the occlusal surface of the teeth are modified with wear, making difficult the identification of many isolated fossil teeth. We use geometric morphometrics to test the hypothesis that tooth shape informs taxonomic affinities and expected levels of morphological variation across gopher taxa. We also incorporate data from microcomputer tomography to investigate changes in occlusal surface shape through wear within individuals. Our analyses demonstrate the usefulness of our approach in identifying extant geomyines to the genus, subgenus and species levels, and fossil entoptychines to the genus and, in some cases, the species level. Our results cast doubt on the validity of some species within Entoptychus and suggest future revisions to entoptychine taxonomy. The amounts of morphological divergence observed among fossil and extant genera are similar. Fossil species do not differ greatly from extant ones in that regard either. Further work evaluating the morphological variation within and across entoptychine species, including unworn teeth and osteological material, will allow revised analyses of the biostratigraphy and palaeoecology of important Oligo‐Miocene mammalian assemblages of the western United States and help to infer the phylogenetic relationships and evolution of gophers.  相似文献   

18.
Primate hands display a major selective compromise between locomotion and manipulation. The thumb may or may not participate in locomotion, but it plays a central role in most manipulative activities. Understanding whether or not the last common ancestor of humans and Pan displayed extant-ape-like hand proportions (i.e., relatively long fingers and a short thumb) can be clarified by the analysis of Miocene ape hand remains. Here we describe new pollical remains-a complete proximal phalanx and a partial distal phalanx-from the middle/late Miocene site of Castell de Barberà (ca., 11.2-10.5 Ma, Vallès-Penedès Basin), and provide morphometric and qualitative comparisons with other available Miocene specimens as well as extant catarrhines (including humans). Our results show that all available Miocene taxa (Proconsul, Nacholapithecus, Afropithecus, Sivapithecus, Hispanopithecus, Oreopithecus, and the hominoid from Castell de Barberà) share a similar phalangeal thumb morphology: the phalanges are relatively long, and the proximal phalanges have a high degree of curvature, marked insertions for the flexor muscles, a palmarly bent trochlea and a low basal height. All these features suggest that these Miocene apes used their thumb with an emphasis on flexion, most of them to powerfully assist the fingers during above-branch, grasping arboreal locomotion. Moreover, in terms of relative proximal phalangeal length, the thumb of Miocene taxa is intermediate between the long-thumbed humans and the short-thumbed extant apes. Together with previous evidence, this suggests that a moderate-length hand with relatively long thumb-involved in locomotion-is the original hand morphotype for the Hominidae.  相似文献   

19.
While studies of canine dimorphism in primates are common, only a few have examined canine tooth size independently within each sex. Recently, Greenfield and Washburn (Am. J. Phys. Anthropol. 84:17–34, 1991) proposed that there are two types of male canines which reflect different allometric scaling patterns of canine crown height against canine occlusal dimensions. They also suggest that proportional canine shape, measured as canine crown height (or projection) relative to the occlusal dimensions, provides an estimate of the canine's function as a weapon, though they provide no test of this hypothesis. This analysis critically examines the claim that there are two types of male canines among anthropoids. It then tests the hypothesis that relative male canine size (measured against body weight) and proportional canine shape are related to estimates of intermale competition, diet, and substrate (used as a surrogate measure of predation pressure). While there is strong taxonomic variation in canine size and shape among male anthropoids, no evidence is found for two discrete canine types. Rather, within families and subfamilies, canine dimensions scale isometrically against body weight and against each other, with a continuum of canine shapes among different taxa. While variation in male canine size is associated with intermale competition and substrate, even when taxonomic variation is controlled, variation in proportional canine shape is not. Neither canine size nor shape are generally associated with variation in diet. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Afropithecus turkanensis, a 17-17.5 million year old large-bodied hominoid from Kenya, has previously been reported to be the oldest known thick-enamelled Miocene ape. Most investigations of enamel thickness in Miocene apes have been limited to opportunistic or destructive studies of small samples. Recently, more comprehensive studies of enamel thickness and microstructure in Proconsul, Lufengpithecus, and Dryopithecus, as well as extant apes and fossil humans, have provided information on rates and patterns of dental development, including crown formation time, and have begun to provide a comparative context for interpretation of the evolution of these characters throughout the past 20 million years of hominoid evolution. In this study, enamel thickness and aspects of the enamel microstructure in two A. turkanensis second molars were quantified and provide insight into rates of enamel apposition, numbers of cells actively secreting enamel, and the time required to form regions of the crown. The average value for relative enamel thickness in the two molars is 21.4, which is a lower value than a previous analysis of this species, but which is still relatively thick compared to extant apes. This value is similar to those of several Miocene hominoids, a fossil hominid, and modern humans. Certain aspects of the enamel microstructure are similar to Proconsul nyanzae, Dryopithecus laietanus, Lufengpithecus lufengensis, Graecopithecus freybergi and Pongo pygmaeus, while other features differ from extant and fossil hominoids. Crown formation times for the two teeth are 2.4-2.6 years and 2.9-3.1 years respectively. These times are similar to a number of extant and fossil hominoids, some of which appear to show additional developmental similarities, including thick enamel. Although thick enamel may be formed through several developmental pathways, most Miocene hominoids and fossil hominids with relatively thick enamel are characterized by a relatively long period of cuspal enamel formation and a rapid rate of enamel secretion throughout the whole cusp, but a shorter total crown formation time than thinner-enamelled extant apes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号