首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ascorbic acid (vitamin C) and the tripeptide thiol, glutathione gamma-glutamyl cysteinyl glycine (glutathione) are the major low molecular weight soluble antioxidants in plant cells. The pathway of glutathione biosynthesis is similar in animals and plants while that of ascorbate biosynthesis differs considerably between the two kingdoms. The potential for obtaining substantial constitutive changes in the tissue contents of these antioxidants by manipulation of the biosynthetic enzymes has been demonstrated. Moreover, the concentrations of ascorbate and glutathione are greatly modified in response to a variety of environmental triggers, particularly those that cause increased oxidative stress. It is essential that the signals and associated signal transduction pathways that trigger enhanced antioxidant accumulation are elucidated as these offer an important alternative means of achieving greater nutritional value in edible plant organs.  相似文献   

2.
We provide evidence of an important role for ascorbate free radical (AFR) reductase, dehydroascorbate (DHA) reductase, glutathione, and glutathione reductase as components of an oxidant-scavenging system in the midgut of larval Helicoverpa zea. Also, midgut ortho-quinone reductase is a potentially important constituent of the protective system against quinones. The midgut activities of AFR reductase, DHA reductase, glutathione reductase, and ortho-quinone reductase were, respectively, 168, 22.1, 6, and 39.5 nmol/min/mg protein. The relatively high activity of these enzymes in the midgut provides circumstantial evidence for a protective mechanism utilizing ascorbate as an antioxidant and glutathione and/or NADPH as reductants. To our knowledge, the enzymes AFR reductase and DHA reductase have not been reported in insects. The particular relevance of this system to antioxidant protection, and in particular to the detoxication of quinones formed in damaged leaf tissues, is discussed.  相似文献   

3.
Herbivorous insect species are constantly challenged with endogenous and exogenous oxidative stress. Consequently, they possess an array of antioxidant enzymes and small molecular weight antioxidants. Lipid-soluble small molecular antioxidants, such as tocopherols, have not been well studied in insects but may play important antioxidant roles. In this study, we identified plasmalogen phosphatidylethanolamines (pPEs) as well as α-, β/γ-, δ-tocopherol in the larvae of the silkworm Bombyx mori by LCMS analyses and examined their distribution. Plasmalogen are reported to inhibit the metal ion induced oxidation. The composition of tocopherols was the same among gut contents, gut tissues, and the other tissues. However, plasmalogens, a unique class of glycerophospholipids rich in polyunsaturated fatty acids and containing a vinyl ether bond at the sn-1 position, were mainly distributed in gut tissues. Plasmalogens might protect gut tissues from oxidation stress.  相似文献   

4.
Plants of the Asteraceae and Hypericaceae possess secondary compounds that induce photooxidation in insect herbivores that consume them. One of the well-established modes of action of these substances is peroxidation of membrane lipids. Some herbivores counteract these defences by avoidance of light and tissues rich in phototoxins or the ability to detoxify these secondary substances. The cytochrome P-450 polysubstrate monooxygenase systems involved, the metabolic products, and a new putative toxin pump have been described. Dietary antioxidants (β-carotene, vitamin E, ascorbate) are additional defences against phototoxicity. They reduce mortality in herbivores exposed to phototoxins and some specialist herbivores have high constitutive levels. Adapted specialist insects also have higher constitutive levels of superoxide dismutase (SOD) and respond to phototoxins in their diet by the induction of catalase (CAT), glutathione reductase (GR), and increased levels of reduced glutathione (GSH). Artificial inhibition of the enzymes SOD and CAT had little effect on phototoxicity but inhibition of GSH synthesis in herbivores enhanced photooxidative effects of administered phototoxins on lipid peroxidation. While insects have many mechanisms to overcome plant photooxidants, the Asteraceae appear to have adopted a strategy of counterattack. We suggest and provide preliminary evidence that a second group of secondary substances, the sesquiterpene lactones, occurring in the Asteraceae can attack key antioxidant defences to synergise phototoxins. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Tobacco leaves of plants with enhanced glutathione reductase activity (GR46-27, Nicotiana tabacum L. cv. Samsun) or with autoregulated senescence-induced production of cytokinins (PSAG12-IPT, N. tabacum L. cv. Wisconsin) were studied during the course of leaf development and senescence by measuring photosynthesis, chlorophyll and protein content, the antioxidants ascorbate, glutathione and α -tocopherol as well as the antioxidative enzymes ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1). The photosynthetic rate, as well as the chlorophyll and protein content, dropped with increasing leaf age after having reached a maximum at the end of the exponential growth phase. The concentrations of the water-soluble antioxidants ascorbate and glutathione fell continuously with age, whereas the concentration of the lipophilic α -tocopherol increased. The activities of the antioxidative enzymes APX, GR and SOD reached their maximum at the beginning of leaf development, but were reduced in senescing leaves. The age-dependent course of the measured leaf parameters in GR46-27 leaves was similar to the one in wild-type leaves, with the exception of an overall enhanced GR activity. In contrast, in old leaves of PSAG12-IPT plants, which possess a much higher life span, the chlorophyll and protein content, the photosynthetic rate, the antioxidant concentrations of ascorbate and glutathione as well as the activities of the antioxidative enzymes were higher than in wild-type leaves. The results show that the capacity of the antioxidative system to scavenge radicals is sufficiently balanced with the plant metabolism, and its decline with increasing age is not the cause, but a consequence of senescence and ageing in plants.  相似文献   

6.
Mastocarpus stellatus and Chondrus crispus are red macroalgae that co-dominate the lower rocky intertidal zones of the northern Atlantic coast. M. stellatus is more tolerant than C. crispus of environmental stresses, particularly those experienced during winter. This difference in tolerance has been attributed, in part, to greater contents or activities of certain antioxidants in M. stellatus. We compared the photosynthetic capacities and activities of three antioxidant enzymes--superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)--as well as the contents of ascorbate from fronds of M. stellatus and C. crispus collected over a year. Photosynthetic capacity increased in winter, but did not differ between species in any season. The activities of the three antioxidant enzymes and the contents of ascorbate were significantly greater in tissues collected during months with mean air and water temperatures below 7.5 degrees C ("cold" months; December, February, March, April) than in months with mean air temperatures above 11 degrees C ("warm" months; June, July, August, October). Overall, C. crispus had significantly greater SOD and APX activities, while M. stellatus had higher ascorbate contents. Species-specific differences in GR activity depended upon mean monthly temperatures at the time of tissue collection; C. crispus had higher activities during cold months, whereas M. stellatus had higher activities during warm months. Taken together, these data indicate that increased ROS scavenging capacity is a part of winter acclimatization; however, only trends in ascorbate content support the hypothesis that greater levels of antioxidants underlie the relatively greater winter tolerance of M. stellatus in comparison to C. crispus.  相似文献   

7.
8.
We studied the effect of low above-zero temperature (2°C) on the content of low-molecular antioxidants (ascorbic acid, glutathione, and carotenoids) and also activities of antioxidant enzymes (ascorbate peroxidase, APO; catalase, CAT; glutathione reductase, GR; and superoxide dismutase, SOD) in green barley (Hordeum vulgare L.) seedlings. Under stress conditions, the content of low-molecular antioxidants, especially that of reduced ascorbate form, increased. Low-temperature stress activated APO, CAT, GR, and SOD. First enzymes responding to the action of stress factor were APO and CAT, i.e., enzymes neutralizing hydrogen peroxide in plant cells, which indicated H2O2 active generation at low temperature. Cytoplasmic SOD was more active than its chloroplast isoforms. This indicates that oxidative process initiation under low-temperature stress occurred more active in the cytosol. After termination of stress-factor action, the content of total ascorbate, glutathione, and carotenoids reduced rapidly to the level close to the initial one. During post-stress period, the amount of reduced ascorbate declined as well; however, it remained at the level higher than the initial one. Activities of APO and CAT dropped sharply; activities of GR and SOD reduced gradually. Thus, reduced ascorbate, APO, and CAT play an important role in plant cell defense against above-zero temperatures close to zero; reduced ascorbate, GR, and SOD are especially important during post-stress period.  相似文献   

9.
《Plant science》1987,50(2):105-109
Levels of chloroplast antioxidants and enzymes that scavenge oxygen racidals were followed in the leaves of pea plants (Pisum sativum L. cv. Meteor) grown under glasshouse conditions between April 1984 and May 1985. While little variation in pigment levels or superoxide dismutase activity was detected during this period, plants grown in early summer (May–June) contained appreciably higher levels of ascorbate, ascorbate peroxidase and glutathione reductase than plants grown in winter (Dec–Jan.). The role of light intensity in regulating levels of chloroplast antioxidants was examined further using pea plants grown in a constant environment chamber under 100 or 400 μmol m−2 s −1 photon flux density. Chloroplasts isolated from plants grown at the higher light intensity contained significantly higher levels of ascorbate, ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase. These data suggest that light intensity may have an important influence on the level and activity of chloroplast antioxidants and oxygen radical scavenger enzymes.  相似文献   

10.
Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria.  相似文献   

11.
It has been proposed that antioxidants can be longevity determinants in animals. However, no comprehensive study has been conducted to try to relate free radicals with maximum life span. This study compares the lung tissue of various vertebrate species — amphibia, mammals and birds — showing very different and well known maximum life spans and life energy potentials. The lung antioxidant enzymes superoxide dismutase, catalase, Se-dependent and non-Se-dependent glutathione peroxidases, and glutathione reductase showed significantly negative correlations with maximum life span. The same was observed for the lung antioxidants, reduced glutathione and ascorbate. It is concluded that a generalized decrease in tissue antioxidant capacity is a characteristic of longevous species. It is suggested that a low rate of free radical recycling (free-radical generation and scavenging) can be an important factor involved in the evolution of high maximum animal longevities. A low free-radical production could be responsible for a low rate of damage at critical sites such as mitochondrial DNA.Abbreviations CAT catalase - COX cytochrome oxidase - GPx glutathione peroxidase - GR glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - LEP life energy potential - MDA malondialdehyde - MLSP maximum life span - MR metabolic rate - MW molecular weight - PO2 partial pressure of oxygen - SOD superoxide dismutase - VO2 basal oxygen consumption  相似文献   

12.
Salinity is an important abiotic factor that adversely affects major agricultural soils of the world and hence limits crop productivity. An optimum mineral-nutrient status of plants plays critical role in determining plant tolerance to various stresses. A pot experiment was conducted on mustard (Brassica campestris L.) to study the protective role of added potassium (K, 40 mg kg−1 soil) against salinity-stress (0, 40 and 80 mM NaCl)-induced changes in plant growth, photosynthetic traits, ion accumulation, oxidative stress, enzymatic antioxidants and non-enzymatic antioxidants at 30 days after sowing. Increasing NaCl levels decreased the growth, photosynthetic traits and the leaf ascorbate and glutathione content but increased the leaf ion accumulation and oxidative stress, and the activity of antioxidant enzymes. In contrast, K-nutrition improved plant growth, photosynthetic traits, activity of antioxidant enzymes and the ascorbate and glutathione content, and reduced ion accumulation and oxidative stress traits in the leaves, more appreciably at 40 mM than at 80 mM NaCl. The study illustrates the physiological and biochemical basis of K-nutrition-induced NaCl tolerance in mustard as a means to achieving increased crop productivity in a sustainable way.  相似文献   

13.
REACTIVE OXYGEN METABOLISM IN INTERTIDAL FUCUS SPP. (PHAEOPHYCEAE)   总被引:1,自引:0,他引:1  
Our previous research suggests that interspecific variation in stress tolerance in intertidal Fucus spp. (Phaeophyceae) is partially mediated by differences in the production of, or ability to detoxify, reactive oxygen. Here we report on the content of antioxidants (ascorbate, glutathione, carotenoids, and tocopherols) and protective enzymes (catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase) involved in reactive oxygen metabolism in three species of intertidal brown algae— Fucus spiralis L., F. evanescens C. Ag., and F. distichus L.—that differ in stress tolerance and position in the intertidal zone. Contents of the major antioxidants were similar in the three species and were not correlated with stress tolerance. The least stress tolerant species, F. distichus, had the lowest activity of reactive-oxygen-scavenging enzymes, although F. spiralis, the species with the highest stress tolerance, and F. evanescens contained similar activities of antioxidant enzymes on a fresh-weight basis. However, the activities of superoxide dismutase and ascorbate peroxidase in F. evanescens are lower than those of F. spiralis when expressed on the basis of chlorophyll. These data show that the ratio between reactive oxygen protection and production might be more important than the absolute content of antioxidants and protective enzymes. It also shows the importance of localization of detoxifying mechanisms and avoidance of oxidative stress.  相似文献   

14.
A modulating role for antioxidants in desiccation tolerance   总被引:3,自引:0,他引:3  
Most organisms depend on the availability of water. However, some life-forms, among them plants and fungi, but very few animals, can survive in the desiccated state. Here we discuss biochemical mechanisms that confer tolerance to desiccation in photosynthetic and non-photosynthetic organisms. We first consider damage caused by water removal and point out that free radicals are a major cause of death in intolerant tissue. Free radicals impair metabolism and necessitate protection and repair during desiccation and rehydration, respectively. As a consequence, desiccation tolerance and prolonged longevity in the desiccated state depend on the ability to scavenge free radicals, using antioxidants such as glutathione, ascorbate, tocopherols and free radical-processing enzymes. Some 'classic' antioxidants may be absent in lower plants and fungi. On the other hand, lichens and seeds often contain secondary phenolic products with antioxidant properties. The major intracellular antioxidant consistently found in all life forms is glutathione, making it essential to survive desiccation. We finally discuss the role of glutathione to act as a signal that initiates programmed cell death. The failure of the antioxidant system during long-term desiccation appears to trigger programmed cell death, causing ageing and eventual death of the organism. In turn, this suggests that a potent antioxidant machinery is one of the underlying mechanisms of desiccation tolerance.  相似文献   

15.
Arsenic induced oxidative stress in plants   总被引:3,自引:0,他引:3  
Iti Sharma 《Biologia》2012,67(3):447-453
Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in the plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues adversely affects the plant metabolism and leads to various physiological and structural disorders. Photosynthetic apparatus, cell division machinery, energy production, and redox status are the major section of plant system that are badly affected by As (V). Similarly As (III) can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes. Arsenic is also known to induce oxidative stress directly by generating reactive oxygen species (ROS) during conversion of its valence forms or indirectly by inactivating antioxidant molecules through binding with their -SH groups. As-mediated oxidative stress causes cellular, molecular and physiological disturbances in various plant species. Activation of enzymatic antioxidants namely, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), Glutathione s-transferase, glutathione peroxidase (GPX) as well as non antioxidant compounds such as, ascorbate, glutathione, carotenoids are reported to neutralize arsenic mediated oxidative stress. Understanding of biochemistry of arsenic toxicity would be beneficial for the development of arsenic tolerant crops and other economically important plants.  相似文献   

16.
The root endophytic basidiomycete Piriformospora indica has been shown to increase resistance against biotic stress and tolerance to abiotic stress in many plants. Biochemical mechanisms underlying P. indica-mediated salt tolerance were studied in barley (Hordeum vulgare) with special focus on antioxidants. Physiological markers for salt stress, such as metabolic activity, fatty acid composition, lipid peroxidation, ascorbate concentration and activities of catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase and glutathione reductase enzymes were assessed. Root colonization by P. indica increased plant growth and attenuated the NaCl-induced lipid peroxidation, metabolic heat efflux and fatty acid desaturation in leaves of the salt-sensitive barley cultivar Ingrid. The endophyte significantly elevated the amount of ascorbic acid and increased the activities of antioxidant enzymes in barley roots under salt stress conditions. Likewise, a sustained up-regulation of the antioxidative system was demonstrated in NaCl-treated roots of the salt-tolerant barley cultivar California Mariout, irrespective of plant colonization by P. indica. These findings suggest that antioxidants might play a role in both inherited and endophyte-mediated plant tolerance to salinity.  相似文献   

17.
BACKGROUND AND AIMS: Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. METHODS: Two tomato (Solanum lycopersicum) cultivars ('Kosaco' and 'Josefina') were subjected to 0.05 (control), 0.5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H(2)O(2); malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. KEY RESULTS: The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H(2)O(2) in the leaves of the two cultivars, these trends being more pronounced in 'Josefina' than in 'Kosaco'. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in 'Kosaco'. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. CONCLUSIONS: High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell-Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress.  相似文献   

18.
The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate–glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil.  相似文献   

19.
The antioxidant defenses of the liver, erythrocytes, blood plasma, and interscapular brown adipose tissue (IBAT) of male ground squirrels were compared with those of male rats kept under identical conditions and fed the same diet. Superoxide dismutase (SOD), ascorbate, vitamin E, catalase, glutathione, and enzymes of glutathione metabolism were measured. In general, antioxidant defenses in erythrocytes were lower in ground squirrels than in rats. The same was true in liver, except that catalase-specific activity was higher. In IBAT, ascorbate, vitamin E, catalase, and glutathione reductase were higher than in rat and more of the SOD activity present was cyanide-insensitive (MnSOD). It is suggested that IBAT in ground squirrels may need a relatively greater antioxidant defense because of its important role in thermogenesis, especially in reawakening from hibernation. No major differences in antioxidant defenses between male and female ground squirrels were observed, except that the SOD activity of IBAT was higher in females.  相似文献   

20.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号