首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An alternative to the classical model of self-incompatibility indicates that genetic control of self-incompatibility could involve more than one locus and function through passive failure of incompatible pollen tubes rather than through their active inhibition. Both aspects of the alternative model have been tested and, in each case, the data support the classical single-locus oppositional interpretation rather than the alternative. On the basis of these data, and others now available, we conclude that, in the Solanaceae, and presumably also in some others, self-incompatibility is better explained by the classical interpretation. Several points, however, remain to be resolved.  相似文献   

2.
M. K. Uyenoyama 《Genetics》1991,128(2):453-469
Recent genetic analyses have demonstrated that self-incompatibility in flowering plants derives from the coordinated expression of a system of loci. To address the selective mechanisms through which a genetic system of this kind evolves, I present a three-locus model for the origin of gametophytic self-incompatibility. Conventional models assume that a single locus encodes all physiological effects associated with self-incompatibility and that the viability of offspring depends only on whether they were derived by selfing or outcrossing. My model explicitly represents the genetic determination of offspring viability by a locus subject to symmetrically overdominant selection. Initially, the level of expression of the proto-S locus is insufficient to induce self-incompatibility. Weak gametophytic self-incompatibility arises upon the introduction of a rare allele at an unlinked modifier locus which enhances the expression of the proto-S locus. While conventional models predict that the origin of self-incompatibility requires at least two- to threefold levels of inbreeding depression, I find that the comparatively low levels of inbreeding depression generated by a single overdominant locus can ensure the invasion of an enhancer of self-incompatibility under sufficiently high rates of receipt of self-pollen. Associations among components of the incompatibility system promote the origin of self-incompatibility. Enhancement of heterozygosity at the initially neutral proto-S locus improves offspring viability through associative overdominance. Further, the modifier that enhances the expression of self-incompatibility develops a direct association with heterozygosity at the overdominant viability locus. These results suggest that the evolutionary processes by which incompatibility systems originate may differ significantly from those associated with their breakdown. The genetic mechanism explored here may apply to the evolution of other systems that restrict reproduction, including maternal-fetal incompatibility in mammals.  相似文献   

3.
Self-incompatibility, a common attribute of plant development, forms a classical paradigm of balancing selection in natural populations, in particular negative frequency-dependent selection. Under negative frequency-dependent selection population genetics theory predicts that the S-locus, being in command of self-incompatibility, keeps numerous alleles in equal frequencies demonstrating a wide allelic range. Moreover, while natural populations exhibit a higher within population genetic diversity, a reduction of population differentiation and increase of effective migration rate is expected in comparison to neutral loci. Allelic frequencies were investigated in terms of distribution and genetic structure at the gametophytic self-incompatibility locus in five wild cherry (Prunus avium L.) populations. Comparisons were also made between the differentiation at the S-locus and at the SSR loci. Theoretical expectations under balancing selection were congruent to the results observed. The S-locus showed broad multiplicity (16 S-alleles), high genetic diversity, and allelic isoplethy. Genetic structure at the self-incompatibility locus was almost four times lower than at 11 nSSR loci. Analysis of molecular variance revealed that only 5?% of the total genetic variation concerns differentiation among populations. In conclusion, the wealth of S-allelic diversity found in natural wild cherry populations in Greece is useful not only in advancing basic population genetics research of self-incompatibility systems in wild cherry but also in the development of breeding programs.  相似文献   

4.
The effect of selection on patterns of genetic structure within and between populations may be studied by contrasting observed patterns at the genes targeted by selection with those of unlinked neutral marker loci. Local directional selection on target genes will produce stronger population genetic structure than at neutral loci, whereas the reverse is expected for balancing selection. However, theoretical predictions on the intensity of this signal under precise models of balancing selection are still lacking. Using negative frequency-dependent selection acting on self-incompatibility systems in plants as a model of balancing selection, we investigated the effect of such selection on patterns of spatial genetic structure within a continuous population. Using numerical simulations, we tested the effect of the type of self-incompatibility system, the number of alleles at the self-incompatibility locus and the dominance interactions among them, the extent of gene dispersal, and the immigration rate on spatial genetic structure at the selected locus and at unlinked neutral loci. We confirm that frequency-dependent selection is expected to reduce the extent of spatial genetic structure as compared to neutral loci, particularly in situations with low number of alleles at the self-incompatibility locus, high frequency of codominant interactions among alleles, restricted gene dispersal and restricted immigration from outside populations. Hence the signature of selection on spatial genetic structure is expected to vary across species and populations, and we show that empirical data from the literature as well as data reported here on three natural populations of the herb Arabidopsis halleri confirm these theoretical results.  相似文献   

5.
Self-incompatibility allows plants to recognize and reject pollen from the same plant, thereby reducing inbreeding. Although in most cases self-incompatibility is controlled by a single genetic locus, recent results show that surprisingly complex signal transduction pathways and many players are involved in pollen recognition and rejection.  相似文献   

6.
Castric V  Vekemans X 《Molecular ecology》2004,13(10):2873-2889
Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. In 1939, Wright suggested that the main evolutionary force driving the genetic and molecular properties of these systems was strong negative frequency-dependent selection acting on pollination success. The empirical observation of high allelic diversity at the self-incompatibility locus in several species, followed by the discovery of very high molecular divergence among alleles in all plant families where the locus has been identified, supported Wright's initial theoretical predictions as well as many of its later developments. In the last decade, however, advances in the molecular characterization of the incompatibility reaction and in the analysis of allelic frequencies and allelic divergence from natural populations have stimulated new theoretical investigations that challenged some important assumptions of Wright's model of gametophytic self-incompatibility. We here review some of these recent empirical and theoretical advances that investigated: (i) the hypothesis that S-alleles are selectively equivalent, and the evolutionary consequences of genetic interactions between alleles; (ii) the occurrence of frequency-dependent selection in female fertility; (iii) the evolutionary genetics of self-incompatibility systems in subdivided populations; (iv) the evolutionary implications of the self-incompatibility locus's genetic architecture; and (v) of its interactions with the genomic environment.  相似文献   

7.
A complex set of cell interactions is required to achieve fertilization. The pollen grain must be recognized by the pistil, take up water, and grow a pollen tube directionally through the style in order to deliver the sperm to the ovule. In many families of flowering plants, self-fertilization can be prevented by recognition mechanisms that allow self-pollen rejection by the pistil. The self-incompatibility response is under the genetic control of a single multi-allelic locus, the (Self-incompatibility) locus. There are two major classes of self-incompatibility systems. Gametophytic self-incompatibility has been well characterized in the Solanaceae and in the Papaveraceae, while sporophytic self-incompatibility has been well characterized in the Brassicaceae. In this review article, we present recent advances in understanding the signals mediating pollen recognition and pollen tube growth, in both compatible and incompatible interactions.  相似文献   

8.
Harbord RM  Napoli CA  Robbins TP 《Genetics》2000,154(3):1323-1333
In plants with a gametophytic self-incompatibility system the specificity of the pollen is determined by the haploid genotype at the self-incompatibility (S) locus. In certain crosses this can lead to the exclusion of half the gametes from the male parent carrying a particular S-allele. This leads to pronounced segregation distortion for any genetic markers that are linked to the S-locus. We have used this approach to identify T-DNA insertions carrying a maize transposable element that are linked to the S-locus of Petunia hybrida. A total of 83 T-DNA insertions were tested for segregation distortion of the selectable marker used during transformation with Agrobacterium. Segregation distortion was observed for 12 T-DNA insertions and at least 8 of these were shown to be in the same linkage group by intercrossing. This indicates that differential transmission of a single locus (S) is probably responsible for all of these examples of T-DNA segregation distortion. The identification of selectable markers in coupling with a functional S-allele will allow the preselection of recombination events around the S-locus in petunia. Our approach provides a general method for identifying transgenes that are linked to gametophytic self-incompatibility loci and provides an opportunity for transposon tagging of the petunia S-locus.  相似文献   

9.
Dominance, its genetic basis and evolution has been at the heart of one of the most intense controversies in the history of genetics. For more than eighty years the existence of dominance modifiers, genetic elements controlling dominance-recessivity interactions, has been suggested as a theoretical possibility, but the modifier elements themselves have remained elusive. A recent study of the self-incompatibility locus in flowering plants provided the first empirical evidence for such genetic elements: small non-coding RNAs that control dominance-recessivity by mediating methylation of the promoter of the recessive allele. Theory has shown that several biological situations are favorable for the evolution of dominance modifiers. We argue that the elucidation of this mechanism of dominance opens up new research avenues that could lead to uncovering dominance modifiers in other genetic systems, such as genes controlling Batesian and Müllerian mimicry or host-parasite interactions, thereby shedding light on the generality of the proposed mechanism.  相似文献   

10.
Genomic consequences of selection on self-incompatibility genes   总被引:2,自引:0,他引:2  
Frequency-dependent selection at plant self-incompatibility systems is inherent and well understood theoretically. A self-incompatibility locus leads to a strong peak of diversity in the genome, to a unique distribution of diversity across the species and possibly to increased introgression between closely related species. We review recent empirical studies demonstrating these features and relate the empirical findings to theoretical predictions. We show how these features are being exploited in searches for other genes under multi-allelic balancing selection and for inference on recent breakdown of self-incompatibility.  相似文献   

11.
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.  相似文献   

12.
In this paper, we investigated the genetic structure and distribution of allelic frequencies at the gametophytic self-incompatibility locus in three populations of Prunus avium L. In line with theoretical predictions under balancing selection, genetic structure at the self-incompatibility locus was almost three times lower than at seven unlinked microsatellites. Furthermore, we found that S-allele frequencies in wild cherry populations departed significantly from the expected isoplethic distribution towards which balancing selection is expected to drive allelic frequencies (i.e. identical frequency equal to the inverse of the number of alleles in the population). To assess whether this departure could be caused either by drift alone or by population structure, we used numerical simulations to compare our observations with allelic frequency distributions expected : (1) within a single deme from a subdivided population with various levels of differentiation; and (2) within a finite panmictic population with identical allelic diversity. We also investigated the effects of sample size and degree of population structure on tests of departure from isoplethic equilibrium. Overall, our results showed that the observed allele frequency distributions were consistent with a model of subdivided population with demes linked by moderate migration rate.  相似文献   

13.
Self-incompatibility is an important genetic mechanism that prevents inbreeding and promotes genetic polymorphism and heterosis in flowering plants. Many fruit species in the Rosaceae, including apple, pear, plum, apricot, sweet cherry, Japanese apricot, and almond, exhibit typical gametophytic self-incompatibility (GSI) controlled by an apparently single multi-allelic locus. This locus encodes at least two components from both the pollen and the pistil, and controls recognition of self- and non-self pollen. Recently, the GSI system has been investigated at the molecular and cellular levels in Rosaceae, and findings have provided some important insights as to how these two genes interact within pollen tubes that lead to specific inhibition of germination and/or growth of self-pollen tubes. In this review, molecular features of S-determinants of both pistil and pollen, identification of S-alleles, mechanisms of self-incompatibility break-down, and evolution of S-alleles are presented. Moreover, hypothetical signal transduction models in a self-incompatible system in Rosaceae are proposed based on recent findings that indicate that several signal factors are involved in GSI responses.  相似文献   

14.
A BC(1) population of the self-compatible tomato Lycopersicon esculentum and its wild self-incompatible relative L. hirsutum f. typicum was used for restriction fragment length polymorphism linkage analysis and quantitative trait loci (QTL) mapping of reproductive behavior and floral traits. The self-incompatibility locus, S, on chromosome 1 harbored the only QTL for self-incompatibility indicating that the transition to self-compatibility in the lineage leading to the cultivated tomato was primarily the result of mutations at the S locus. Moreover, the major QTL controlling unilateral incongruity also mapped to the S locus, supporting the hypothesis that self-incompatibility and unilateral incongruity are not independent mechanisms. The mating behavior of near-isogenic lines carrying the L. hirsutum allele for the S locus on chromosome 1 in an otherwise L. esculentum background support these conclusions. The S locus region of chromosome 1 also harbors most major QTL for several floral traits important to pollination biology (e.g., number and size of flowers), suggesting a gene complex controlling both genetic and morphological mechanisms of reproduction control. Similar associations in other flowering plants suggest that such complex may have been conserved since early periods of plant evolution or else reflect a convergent evolutionary process.  相似文献   

15.
RFLP maps of potato and their alignment with the homoeologous tomato genome   总被引:10,自引:0,他引:10  
Summary An RFLP linkage map of the potato is presented which comprises 304 loci derived from 230 DNA probes and one morphological marker (tuber skin color). The self-incompatibility locus of potato was mapped to chromosome I, which is homoeologous to tomato chromosome I. By mapping chromosome-specific tomato RFLP markers in potato and, vice versa, potato markers in tomato, the different potato and tomato RFLP maps were aligned to each other and the similarity of the potato and tomato genome was confirmed. The numbers given to the 12 potato chromosomes are now in accordance with the established tomato nomenclature. Comparisons between potato RFLP maps derived from different genetic backgrounds revealed conservation of marker order but differences in chromosome and total map length. In particular, significant reduction of map length was observed in interspecific compared to intraspecific crosses. The distribution of regions with distorted segregation ratios in the genome was analyzed for four potato parents. The most prominent distortion of recombination was found to be caused by the self-incompatibility locus.  相似文献   

16.
In the laboratory, the ascomycete fungus Cryphonectria parasitica is rarely self-fertile, and has a self-incompatibility system that resolves into two intersterility groups, controlled by a single locus. In natural populations, however, self-fertilization occurs frequently. In this report, we show that the C. parasitica self-incompatibility locus (MAT) comprises two idiomorphs (alleles that are highly divergent in sequence), conforming to the paradigm of self-incompatibility as described for other ascomycetes. Starting with a fragment putatively from the MAT-2 idiomorph, we used a PCR-based cloning approach to identify 3.5- and 2-kb sequences unique to MAT-1 and MAT-2 isolates, respectively. These sequences were then used to design idiomorph-specific PCR primer pairs, allowing us to efficiently identify the mating types of isolates, a crucial component of our research on the environmental and genetic factors underlying this mixed mating system.  相似文献   

17.
Gametophytic self-incompatibility (GSI) in the grasses is controlled by a distinct two-locus genetic system governed by the multiallelic loci S and Z. We have employed diploid Hordeum bulbosum as a model species for identifying the self-incompatibility (SI) genes and for elucidating the molecular mechanisms of the two-locus SI system in the grasses. In this study, we attempted to identify S haplotype-specific cDNAs expressed in pistils and anthers at the flowering stage in H. bulbosum, using the AFLP-based mRNA fingerprinting (AMF, also called cDNA-AFLP) technique. We used the AMF-derived DNA clones as markers for fine mapping of the S locus, and found that the locus resided in a chromosomal region displaying remarkable suppression of recombination, encompassing a large physical region. Furthermore, we identified three AMF-derived markers displaying complete linkage to the S locus, although they showed no significant homology with genes of known functions. Two of these markers showed expression patterns that were specific to the reproductive organs (pistil or anther), suggesting that they could be potential candidates for the S gene.  相似文献   

18.
Over 50 years ago, Baker (1955, 1967) suggested that self-compatible species were more likely than self-incompatible species to establish new populations on oceanic islands. His logic was straightforward and rested on the assumption that colonization was infrequent; thus, mate limitation favored the establishment of self-fertilizing individuals. In support of Baker's rule, many authors have documented high frequencies of self-compatibility on islands, and recent work has solidified the generality of Baker's ideas. The genus Lycium (Solanaceae) has ca. 80 species distributed worldwide, and phylogenetic studies suggest that Lycium originated in South America and dispersed to the Old World a single time. Previous analyses of the S-RNase gene, which controls the stylar component of self-incompatibility, have shown that gametophytically controlled self-incompatibility is ancestral within the genus, making Lycium a good model for investigating Baker's assertions concerning reproductive assurance following oceanic dispersal. Lycium is also useful for investigations of reproductive evolution, given that species vary both in sexual expression and the presence of self-incompatibility. A model for the evolution of gender dimorphism suggests that polyploidy breaks down self-incompatibility, leading to the evolution of gender dimorphism, which arises as an alternative outcrossing mechanism. There is a perfect association of dimorphic gender expression, polyploidy, and self-compatibility (vs. cosexuality, diploidy, and self-incompatibility) among North American Lycium. Although the association between ploidy level and gender expression also holds for African Lycium, to date no studies of mating systems have been initiated in Old World species. Here, using controlled pollinations, we document strong self-incompatibility in two cosexual, diploid species of African Lycium. Further, we sequence the S-RNase gene in 15 individuals from five cosexual, diploid species of African Lycium and recover 24 putative alleles. Genealogical analyses indicate reduced trans-generic diversity of S-RNases in the Old World compared to the New World. We suggest that genetic diversity at this locus was reduced as a result of a founder event, but, despite the bottleneck, self-incompatibility was maintained in the Old World. Maximum-likelihood analyses of codon substitution patterns indicate that positive Darwinian selection has been relatively strong in the Old World, suggesting the rediversification of S-RNases following a bottleneck. The present data thus provide a dramatic exception to Baker's rule, in addition to supporting a key assumption of the Miller and Venable (2000) model, namely that self-incompatibility is associated with diploidy and cosexuality.  相似文献   

19.
Cross-compatibility behaviour of doubled haploid (DH) and hybrid genotypes of Coffea camphora was established using both phenotypic bioassay and in situ seed-set examination. The availability of DHs provided the opportunity of working with genetically homogenous pollen and female parents. The aniline blue fluorescence (ABF) method was applied to detect callose accumulation in pollen and pistil. Clear cross-compatibility/incompatibility situations were observed and confirmed by in situ seed-set analysis. Cross-compatibility analysis of hybrid combinations involving different DHs corroborated the crossing behaviour observed at the DH level. Expression of the self-incompatibility system did not appear to be affected by the low vigour of the DH. The crossing-behaviour distribution observed within DHs derived from clone IF200 confirmed that self-incompatibility in C. canephora is a gametophytic self-incompatibility system controlled by a single locus (S-locus). Reduced seed-set developments following incompatible crosses may indicate the occurrence of pseudo-incompatibility. Molecular marker linkage analysis showed that the S-locus is associated with an RFLP marker on linkage group 9. The availability of a linked DNA marker should facilitate the genetic analysis of self-incompatibility in relation to coffee breeding programmes.  相似文献   

20.
B Walsh 《Heredity》2014,112(1):1-3
Adaptation is commonly a multidimensional problem, with changes in multiple traits required to match a complex environment. This is epitomized by balanced polymorphisms in which multiple phenotypes co-exist and are maintained in a population by a balance of selective forces. Consideration of such polymorphisms led to the concept of the supergene, where alternative phenotypes in a balanced polymorphism segregate as if controlled by a single genetic locus, resulting from tight genetic linkage between multiple functional loci. Recently, the molecular basis for several supergenes has been resolved. Thus, major chromosomal inversions have been shown to be associated with polymorphisms in butterflies, ants and birds, offering a mechanism for localised reduction in recombination. In several examples of plant self-incompatibility, the functional role of multiple elements within the supergene architecture has been demonstrated, conclusively showing that balanced polymorphism can be maintained at multiple coadapted and tightly linked elements. Despite recent criticism, we argue that the supergene concept remains relevant and is more testable than ever with modern molecular methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号