首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a 1-ha plot in an unflooded moist tropical forest in Reserva de Producción Faunística Cuy abeno in Amazonian Ecuador, 96 species of vascular herbaceous plants were found rooted in the ground; they were all perennials; 25 species were pteridophytes, representing 11 families, 71 species (14 families) were angiosperms. Araceae, Marantaceae, and Poaceae were the most important angiosperm families. The total abundance of the ground herbs was 10 960 individuals, the total cover was 250 m2, or 2.5% of the 1-ha plot. Species of ground herbs exhibit two major life-form strategies: the obligate terrestrial species (59%) are restricted to the ground; the facultative terrestrial species (41 %) have climbing and epiphytic individuals as well. Difference in life-form strategy as well as difference in edaphic specialization along a topographic gradient are two factors that may enhance the number of coexisting species within the 1-ha sample plot.  相似文献   

2.
Summary Six progeny trials that included 147 half-sib progenies of maize (Zea mays L.) population ESALQ PB-5 were conducted for the purpose of studying plot size and its consequences in recurrent selection programs. The progenies were evaluated in three 7x7 duplicate simple lattice experiments using one-row plots of 5 m2. At harvest each plot was partitioned into five sub-plots (sampling units), and data was collected from each sampling unit. At the same time and place the same progenies were evaluated in three 7x7 duplicate simple lattice experiments using 1-m2 (linear row with 5 plants) plots. Data were collected for plant and ear height, ear diameter, total ear weight, and total grain yield. The data were combined by using adjacent sampling units, and the analyses were performed by considered five plot sizes in addition to those of the independent trials with 1-m2 plots. The experiments with 1-m2 plots were less efficient in discriminating for yield traits among progenies than those with 5-m2 plots. The combination of plot size and number of progenies evaluated indicated that an optimum plot size for yield was between 3 and 4 m2, or 15–20 plants per plot. With such sizes the expected gain was maximized for the four replications used in this study. If the total area covered by each progeny is constant, the maximum gain from selection, however, is attained by decreasing plot size and increasing the number of replications. The minimum size of plots is, however, limited by practical or theoretical criteria. Plot size affected the estimates of additive genetic variance, coefficient of heritability, and genetic coefficient of variation for all of the traits. No practical limitation was observed for conducting experiments with 1-m2 plot.  相似文献   

3.
A nested-intensity design for surveying plant diversity   总被引:2,自引:0,他引:2  
Managers of natural landscapes need cost-efficient, accurate, and precise systems to inventory plant diversity. We investigated a nested-intensity sampling design to assess local and landscape-scale heterogeneity of plant species richness in aspen stands in southern Colorado, USA. The nested-intensity design used three vegetation sampling techniques: the Modified-Whittaker, a 1000-m2 multiple-scale plot (n = 8); a 100-m2 multiple-scale Intensive plot (n = 15); and a 100-m2 single-scale Extensive plot (n = 28). The large Modified-Whittaker plot (1000 m2) recorded greater species richness per plot than the other two sampling techniques (P < 0.001), estimated cover of a greater number of species in 1-m2 subplots (P < 0.018), and captured 32 species missed by the smaller, more numerous 100-m2 plots of the other designs. The Intensive plots extended the environmental gradient sampled, capturing 17 species missed by the other techniques, and improved species–area calculations. The greater number of Extensive plots further expanded the gradient sampled, and captured 18 additional species. The multi-scale Modified-Whittaker and Intensive designs allowed quantification of the slopes of species–area curves in the single-scale Extensive plots. Multiple linear regressions were able to predict the slope of species–area curves (adj R 2 = 0.64, P < 0.001) at each Extensive plot, allowing comparison of species richness at each sample location. Comparison of species–accumulation curves generated with each technique suggested that small, single-scale plot techniques might be very misleading because they underestimate species richness by missing locally rare species at every site. A combination of large and small multi-scale and single-scale plots greatly improves our understanding of native and exotic plant diversity patterns.  相似文献   

4.
Abstract. Plant cover was visually estimated by five observers, independent of each other, in a species‐rich grassland in the Bílé Karpaty Mts., southeastern Czech Republic, in seven plots ranging from 0.001 to 4 m2. Variation of total plant cover among the observers was high at small scales: 0.001–0.016 m2; coefficient of variation, CV = 35 to 45%, but much lower at larger scales: 0.06–4 m2; CV = 7 to 15%. Differences between visual estimates of plant cover of individual species made by different observers were affected by plot size, total cover and morphology of particular plants. CV of the cover of individual species ranged from 0 to 225% and decreased with increasing plot size. For abundant plants the CV attained ca. 50%, independent of plot size. In spite of a very high number of sterile plants with similar leaf morphology and colour, the observed variation in cover estimates in the studied grassland was comparable with results reported from other vegetation types. Differences between estimates by individual observers were often larger than usual year to year changes in undisturbed grasslands. Therefore, I suggest that to avoid difficulties in the interpretation of results based on plant cover data obtained from visual estimates, several observers should always work together, adjusting their extreme estimates.  相似文献   

5.
A Modified-Whittaker nested vegetation sampling method   总被引:8,自引:0,他引:8  
A standardized sampling technique for measuring plant diversity is needed to assist in resource inventories and for monitoring long-term trends in vascular plant species richness. The widely used Whittaker plot (Shmida 1984) collects species richness data at multiple spatial scales, using 1 m2, 10 m2, and 100 m2 subplots within a 20 m × 50 m (1000 m2) plot, but it has three distinct design flaws involving the shape and placement of subplots. We modified and tested a comparable sampling design (Modified-Whittaker plot) that minimizes the problems encountered in the original Whittaker design, while maintaining many of its attractive attributes. We overlaid the two sampling methods in forest and prairie vegetation types in Larimer County, Colorado, USA (n=13 sites) and Wind Cave National Park, South Dakota, USA (n=19 sites) and showed that the modified design often returned significantly higher (p<0.05) species richness values in the 1 m2, 10 m2, and 100 m2 subplots. For all plots, except seven ecotone plots, there was a significant difference (p<0.001) between the Whittaker plot and the Modified-Whittaker plot when estimating the total number of species in the 1000 m2 plots based on linear regressions of the subplot data: the Whittaker plot method, on average, underestimated plant species richness by 34%. Species-area relationships, using the Modified-Whittaker design, conformed better to published semilog relationships, explaining, on average, 92% of the variation. Using the original Whittaker design, the semilog species-area relationships were not as strong, explaining only 83% of the variation, on average. The Modified-Whittaker plot design may allow for better estimates of mean species cover, analysis of plant diversity patterns at multiple spatial scales, and trend analysis from monitoring a series of strategically-placed, long-term plots.  相似文献   

6.
Severe droughts may alter the reproductive phenology of tropical tree species, but our understanding of these effects has been hampered by confounded variation in drought, light and other factors during natural drought events. We used a large-scale experimental reduction of throughfall in an eastern-central Amazon forest to study the phenological response to drought of an abundant subcanopy tree, Coussarea racemosa. We hypothesized that drought would alter the production and the timing of reproduction, as well as the number of viable fruits. The study system comprised two 1-ha plots in the Tapajos National Forest, Para, Brazil: a dry plot where 50% of incoming precipitation (80% throughfall) was diverted from the soil during the six-month wet season beginning in January 2000, and a wet plot that received natural rainfall inputs. Fruit production of C. racemosa was quantified every 15 days using 100 litter traps (0.5 m2) in each plot. The production of new leaves and flowers was recorded monthly for C. racemosa individuals. Soil water, pre-dawn leaf water potential and solar radiation were measured to help interpret phenological patterns. Over the ∼3.5-year period (April 2000 through December 2003), total fruit production remained similar between plots, declining by 12%. In 2003, production was four times higher in both plots than in previous years. In the dry plot, fruit fall shifted 40 and 60 days later into the dry season in 2002 and 2003, respectively. Total fruit fall dry mass production was variable across the study period. Foliage and flower production coincided with peak irradiance early in the dry season until delays in flowering appeared in the dry plot in 2002 and 2003. Plant water stress, through its influence on leaf developmental processes and, perhaps, inhibition of photosynthesis, appears to have altered both the timing of fruit fall and the quality and number of seeds produced.  相似文献   

7.
The studies were conducted in the Biaowiea primeval forest on a study area of 28,000 m2, divided into two plots and 280 quadrats. In 1979, all Carpinus betulus individuals were cut off within the experimental plot (E, 7800 m2), whilst the control plot (C, 13000 m2) remained unchanged. Each plot contained a phytocoenose of Potentillo albae-Quercetum and an adjacent community of Tilio-Carpinetum.By 1983, hornbeam invasion into the oak-forest habitat within C plot had resulted in: 1) a decrease in species number by more than 10 per 100 m2 on average (c.a. 30%); 2) a twofold greater deletion rate of heliophil oak-forest species than for Fagetalia and Querco-Fagetea; 3) a diminution of the area of oak-forest phytocoenose by more than 100 m2 per year; 4) formation of a community with a species combination corresponding to Tilio-Carpinetum. Hornbeam removal had the opposite effect: 1) the number of species increased by more than 100%; 2) the number and frequency of oak forest species rose considerably; 3) those parts of the phytocoenose colonized previously by Carpinus betulus regenerated, and thence the area of Potentillo albae-Quercetum community increased.  相似文献   

8.
Abstract. Epiphytic and epixylic lichens were surveyed on 15 1-ha plots in mature Picea abies-dominated boreal forests in southern Finland. The sample plots were classified into three groups according to the age of the dominant tree stand and recent signs of cutting: (1) early mature managed, ‘EM’ (95 -109 yr), (2) late mature managed, ‘LM’ (126 - 145 yr) and (3) old-growth, ‘OG’ (129 - 198 yr). Two data sets on epiphytic and epixylic lichens were recorded from each plot: (1) species on basal trunks and branches of Picea abies and (2) species on all available woody substrates, including basal parts of all tree species, saplings, snags, logs and stumps. 142 epiphytic and epixylic lichen species were found, of which 83 (58%) occurred on P. abies. Mean total numbers of species per sample plot were 69 in EM, 78 in LM and 88 in OG plots, species number on P. abies were 47, 56, and 54 respectively. The LM plots had lower species numbers than OG plots, mainly due to the lack of old Populus tremula trees, but they had higher species number than the EM plots mainly due to the higher age of Picea abies. Differences in species composition, both within and between the three groups, were small. The results suggest that the epiphytic and epixylic lichen diversity in a managed stand can be increased by prolonging the rotation of the stand to >120 yr and by increasing the diversity of habitats in the stand.  相似文献   

9.
Changes in rotifer soil communities along a primary succession chronosequence was studied on brown coal post mining areas near Sokolov, NW part of the Czech Republic. The chronosequence of unreclaimed plots was 2, 11, 14, 20, 43 years old. The rotifers were extracted from soil samples using a modification of the Baermann funnel method with combined light and temperature gradients. In total, 34 taxa of soil rotifers were identified throughout the study. The most common species were Encentrum arvicola, Adineta vaga, A. steineri, Habrotrocha rosa, H. elegans, H. filum, Macrotrachela quadricornifera and M. nana. Rotifer abundance varied from 4 ± 2 · 103 to 516 ± 488 · 103 individuals m–2. Species number per sample increased with age of the plot (r = 0.45, P = 0.003). The most important environmental variables which significantly affected rotifer community were wood cover, sodium concentration and age of the plot. Pioneer plant species occupied 2 and 11 year old plots, 14–20 year old plots were covered by Salix caprea shrubs and a forest formed by Betula pendula and Populus tremuloides developed on the 43 year old plot. Some species were ubiquitous and present throughout the chronosequence (Macrotrachela quadricornifera). Among the pioneer species were Encentrum incisum, Habrotrocha rosa and Macrotrachela papillosa, 14–20 years old plots were preferred by Adineta vaga, E. arvicola, H. filum and M. nana, while the oldest plot was dominated by Adineta steineri and Encentrum mucronatum. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
CAMPBELL, D. G., STONE, J. L. & ROSAS Jr, A., 1992. A comparison of the phytosociology and dynamics of three floodplain (Várzea) forests of known ages, Rio Juruá, western Brazilian Amazon. An unusual historic accident has resulted in three adjacent inundated (vórzea) forests of known ages (50 years old, 14–50 years old, and 14 years old), on the margin of the Rio Juruá, near the village of Rodrigues Alves in western Acre, Brazilian Amazon. One-hectare quantitative inventories (500 × 20 m) were conducted on each of the three forests. Physical characteristics of the plots, including soil particle size, soil cation levels, level of inundation and rate of soil deposition were measured. Plot 1, steeply sloping and ecotonal between várzea and terra firme, was infrequently flooded, with a mean high water mark of 0.0. Plot 2, on slightly undulating terrain, had a mean high water mark of 1.16 m. Plot 3 was level and deeply-flooded, with a mean high water mark of 4.00 m. All trees ≥ 10 cm diameter at breast height (dbh) were mapped, measured and identified to species. Plots 1, 2 and 3 contained 523, 420 and 777 trees, 106, 73 and 20 species, Shannon diversity indices of 3.60, 3.51 and 1.82, and stand basal areas of 25.46 m2, 27.01 m2 and 25.72 m2, respectively. Alchomea triplinervia was the superior competitor on species-rich plot 1; Annona sp. strongly dominated in the limiting conditions of plot 3. On plot 2, no single species was able to achieve dominance. For the 25 species with N≥ 10, habitat specialization as a function of the level of annual inundation was demonstrated, and for five of these species that occurred on plot 1, further refinement of niche as a function of gradient was demonstrated. One-year mortality in plots 1, 2 and 3, was 1.99%, 1.56% and 1.70%, respectively. In Plot 3, 77% of the mortalities were trees that had died standing, vs 40% and 43% in plots 1 and 2.  相似文献   

11.
This study was set up to examine the effect of plot patterns on the accuracy of phytosociological characterization of tropical vegetation. Fifteen and twenty square plots of 1 ha were demarcated, respectively, in woodland and dense forest in Bénin. Each 1 ha plot was divided into 100 quadrats of one 100 m2. Species of trees in each quadrat were identified and recorded. The cost in terms of time required to record tree species in each 1 ha plot and five random quadrats in a 1 ha plot were also recorded to compute the mean inventory effort for a team of three foresters. From the 100 quadrats in a 1 ha plot, fourteen independent subplots of square and rectangular plots with different sizes were considered by grouping together adjacent quadrats of 100 m2. Eigenanalysis was carried out to compare the subplots. Moreover, the relationship between the relative loss of accuracy (RLA) and the size of subplots was modelled. Plot size highly influenced the RLA (P < 0.05). Findings indicated that the square plots of 1500 and 1000 m2 with an inventory effort of 0.35 and 0.20 man‐days per subplot, respectively in tropical dense forests and woodlands appeared to be the most efficient in the phytosociological characterization of woody vegetation.  相似文献   

12.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

13.
Facilitation (positive plant–plant interactions) is a potential means to accelerate vegetation restoration in arid areas. Shrubs can accelerate vegetation recovery by means of soil amelioration, but this effect has not been evaluated at large spatial scales or across scales. Here, we examined the facilitative function of shrub change across spatial scales at a desert steppe in Mongolia. Using a high-resolution satellite image, we established five 2500 m2 plots in each of three shrub density classes (low, moderate, high) in a desert steppe in Mongolia. To evaluate the facilitative functions of shrubs at multiple spatial scales, we recorded the total number of plant species at three nested spatial scales in each plot: 25, 400, and 2500 m2. The facilitative effect of shrubs on plant species richness was more pronounced at larger scales. Denser shrub communities increased plant species diversity at a larger scale. However, the increased taxonomic diversity was not clearly related to increased functional diversity in this system. This scale dependency in species diversity can be explained by the degree to which spatial heterogeneity of habitats within the plots increased as plot size increased. These results support the hypothesis of scale-dependent changes in the balance between facilitation and competition. Therefore, transplanting shrub saplings at high-density and a larger scale could potentially improve the success of vegetation restoration in arid regions.  相似文献   

14.
This study assessed the effectiveness of plot patterns for estimating recruit density of woody species in the dense forest of Lama Reserve (Bénin). The experimental design consisted of thirty 0.04 ha plots randomly settled in the forest and each subdivided into four hundred 1‐m² quadrats. Within each quadrat, recruits (dbh ≤10 cm) were counted and saplings (h ≥ 2 m and 2 cm ≤ dbh < 7 cm) and young trees (h ≥ 2 m and 7 cm ≤ dbh < 10 cm) were measured in dbh. In each 0.04 ha plot, seven different plot shapes and sizes were considered by grouping adjacent 1‐m2 quadrats. Relationship between mean square error of the estimation of the density of recruitments and the plot sizes was modelled using the Smith law. Results obtained showed an average value of density of recruitments of 10.7 plants/m2 with Green index value of 0.01. Shape and size of plots highly influenced the estimation of the density of recruitments. Rectangular plots of length/width = 2 and size of 72 m² (12 m × 6 m) were most efficient for the estimation of the density of recruitments in tropical dense forest with standard error of 0.79 plants/m2.  相似文献   

15.
The land snail community of Idanre hills was studied using a combination of direct search and leaf litter‐sieving techniques. In total, 36 species and 2192 individuals in nine molluscan families were collected from 19 plots of 400 m2 each. Species richness varied from 8 to 23 and the number of individuals from 21 to 566 per plot. Species richness was dominated by the carnivorous Streptaxidae, while numerical abundance was dominated by the Subulinidae, Streptaxidae and Urocyclidae, contributing to more than 95% of the total number of individuals. The single most abundant species was the urocyclid Trochozonites talcosus, contributing to almost 20% of the total number of individuals. The species richness and high abundance of land snails make Idanre hills a unique site for molluscan conservation in Nigeria.  相似文献   

16.
We describe the mesoscale floristic patterns in the central Western Ghats of Karnataka, India, through combined analysis of woody species abundance and stand structure data from a network of ninety-six 1-ha sampling plots spread across 22,000 km2. A total of 61,906 individuals (≥10 cm gbh) comprising 400 plant species from 254 genera and 75 families were recorded. Euphorbiaceae, Rubiaceae, Lauraceae and Moraceae families constituted 23.5 percent of the total number of species encountered. The relative dominance of species was skewed with Poecilonueron indicum, Xylia xylocarpa, Terminalia tomentosa and Anogeissus latifolia being dominant in some plots. Correspondence analysis (CA) and a nonmetric multidimensional scaling (NMDS) of plots by species abundances data showed similar arching patterns, with significant correlation between the first axis of CA and NMDS (r=0.77). Hierarchical clustering of plot scores along the three first CA axes resulted in splitting the plots into five different categories that broadly reflect the major bioclimatic features of the region. A multiscale bootstrapping test indicated that categorization of the wettest (wet evergreen group 1 and 2) and driest (dry deciduous) groups were robust (P<0.05 with 1000 bootstraps), while the remaining two transitional groups were uncertain (P=0.12 and 0.26 for moist deciduous and semi-evergreen group, respectively). Principal component analysis revealed that plots with similar floristic composition can encompass contrastingly different physiognomic structures (canopy cover, canopy height and mean tree diameter) probably in relation to their levels of disturbance. Observed patterns in the floristic composition have been discussed in the light of the complex interaction between the bioclimatic and disturbance regimes that characterize the region.  相似文献   

17.
Questions: Do ordination patterns differ when based on vegetation samples recorded in plots of different size? If so, how large is the effect of plot size relative to the effects of data set heterogeneity and of using presence/absence or cover‐abundance data? Can we combine plots of different size in a single ordination? Methods: Two homogeneous and two heterogeneous data sets were sampled in Czech forests and grasslands. Cover‐abundances of plant species were recorded in series of five or six nested quadrats of increasing size (forest 49‐961 m2; grassland 1‐49 m2). Separate ordinations were computed for plots of each size for each data set, using either species presences/absences or cover‐abundances recorded on an ordinal scale. Ordination patterns were compared with Procrustean analysis. Also, ordinations of data sets jointly containing plots of different size were calculated; effects of plot size were evaluated using a Monte Carlo test in constrained ordination. Results: The results were consistent between forest and grassland data sets. In homogeneous data sets, the effect of presence/absence vs. cover‐abundance was similar to, or larger than, the effect of plot size; for presence/absence data the differences between ordinations of differently sized plots were smaller than for cover‐abundance data. In heterogeneous data sets, the effect of plot size was larger than the effect of presence‐absence vs. cover‐abundance. The plots of smaller size (= 100 m2 in forests, = 4 m2 in grasslands) yielded the most deviating ordination patterns. Joint ordinations of differently sized plots mostly did not yield patterns that would be artifacts of different plot size, except for plots from the homogeneous data sets that differed in size by a factor of four or higher. Conclusions: Variation in plot size does influence ordination patterns. Smaller plots tend to produce less stable ordination patterns, especially in data sets with low ß‐diversity and species cover‐abundances. Data sets containing samples from plots of different sizes can be used for ordination if they represent vegetation with large ß‐diversity. However, if data sets are homogeneous, i.e. with low ß‐diversity, the differences in plot sizes should not be very large, in order to avoid the danger of plot size differences distorting the real vegetation differentiation in ordination patterns.  相似文献   

18.
We investigated the influence of position on a slope (plot relative elevation) and vegetation disturbance (the tallest tree height per plot) on community composition and diversity in a SE Brazilian Seasonal Semideciduous Forest (46°55′ W, 22°50′ S). Trees with dbh ≥5 cm were sampled in one hundred 10 × 10 m plots randomly placed in a 6.5-ha stand. Through partial Mantel test, floristic dissimilarities among plots (Jaccard index computed with species abundance in each plot) were correlated with environmental distances among plots (Euclidian distance index computed with relative elevation and the tallest tree height values in each plot). Relative elevation and the tallest tree per plot height were individually correlated with floristic gradients expressed by PCA axes scores using Pearson’s correlation coefficient. Through resampling, we compared diversity (richness, Berger-Parker D and Shannon H′) among plots in the drier (up) and moister (low) ends of the slope. Floristic dissimilarities were significantly correlated with environmental distances even after geographic distances among plots have been partialled out (r m = 0.1274, p < 0.001). The first two PCA axes accounted for 22% of the total variance. After Bonferroni and Dutilleul’s corrections, axis 1 showed a marginally significant correlation with plot relative elevation (r = − 0.4097, p = 0.0309), and axis 2 was significantly correlated with the tallest tree height per plot (r = 0.2953, p = 0.0106). Position on the slope and vegetation disturbance were reliable predictors of community composition, thus suggesting the operation of niche assembly organizing processes. Richness and diversity (H′) decreased and dominance (D) increased with elevation on the slope. Dominance increase from D (300) = 0.11 (confidence interval = 0.091–0.131) to D (300) = 0.19 (CI = 0.165–0.210) surpassed the expected dominance increase based on the reduction of richness alone: D (300) = 0.13 (CI = 0.110–0.140), thus highlighting the niche partitioning assembly of the community, especially among abundant species. Given the great amount of floristic variability remaining unexplained, stochastic processes, such as those related to dispersal limitation, may also have influence on the community composition. Therefore, both niche assembly and chance events can operate even on a fine local scale.  相似文献   

19.
Questions: A multiple plot design was developed for permanent vegetation plots. How reliable are the different methods used in this design and which changes can we measure? Location: Alpine meadows (2430 m a.s.l.) in the Swiss Alps. Methods: Four inventories were obtained from 40 m2 plots: four subplots (0.4 m2) with a list of species, two 10m transects with the point method (50 points on each), one subplot (4m2) with a list of species and visual cover estimates as a percentage and the complete plot (40 m2) with a list of species and visual estimates in classes. This design was tested by five to seven experienced botanists in three plots. Results: Whatever the sampling size, only 45‐63% of the species were seen by all the observers. However, the majority of the overlooked species had cover < 0.1%. Pairs of observers overlooked 10‐20% less species than single observers. The point method was the best method for cover estimate, but it took much longer than visual cover estimates, and 100 points allowed for the monitoring of only a very limited number of species. The visual estimate as a percentage was more precise than classes. Working in pairs did not improve the estimates, but one botanist repeating the survey is more reliable than a succession of different observers. Conclusion: Lists of species are insufficient for monitoring. It is necessary to add cover estimates to allow for subsequent interpretations in spite of the overlooked species. The choice of the method depends on the available resources: the point method is time consuming but gives precise data for a limited number of species, while visual estimates are quick but allow for recording only large changes in cover. Constant pairs of observers improve the reliability of the records.  相似文献   

20.
Using results from a long-term study of fine-scale dynamics in grasslands in four widely separated study areas from two continents, we provide further evidence to support the idea of the carousel model as an aid to describe the high fine-scale temporal and spatial species mobility found in grassland communities. Cumulative species numbers on small subplots in plots situated in stable plant communities, determined as the sum of species appearing in these subplots in one or more years over a period of time, are very high. In floristically different species-rich grasslands, varying from moist pine savannas in North Carolina and Mississippi, to humid chalk grassland in the Netherlands and seasonally dry limestone grassland in Sweden, average species numbers on subplots of 0.01 m2 in plots of 2.5 m2 over the period 1985–1989 were similar, most plots falling in the range 10.8–13.2. The total cumulative species numbers were similar as well, most plots falling in the range 17.4 and 20.9. Yearly average species numbers remained relatively constant. Considerable species turnover is occurring in all these communities; on average three species appear and three disappear each year in each 0.01 m2 subplot. Total species accumulation on 0.01 m2 subplots over the period 1985–1989 varied considerably, from 4.1 to 11.6, and is correlated with the cumulative species total on the plot, the latter figure being considered as correlated with the size of the species pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号