首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《PloS one》2015,10(9)
The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion–mainly to East Europe and the northern Balkans–resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: ‘central-east European’ for West and East Slavs, and ‘south-east European’ for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people.  相似文献   

2.
Polymorphisms in mitochondrial (mt) DNA and Y-chromosomes of seven socially and linguistically diverse castes and tribes of Eastern India were examined to determine their genetic relationships, their origin, and the influence of demographic factors on population structure. Samples from the Orissa Brahmin, Karan, Khandayat, Gope, Juang, Saora, and Paroja were analyzed for mtDNA hypervariable sequence (HVS) I and II, eight Y-chromosome short tandem repeats (Y-STRs), and lineage-defining mutations diagnostic for Indian- and Eurasian-specific haplogroups. Our results reveal that haplotype diversity and mean pairwise differences (MPD) was higher in caste groups of the region (>0.998, for both systems) compared to tribes (0.917-0.996 for Y-STRs, and 0.958-0.988 for mtDNA haplotypes). The majority of paternal lineages belong to the R1a1, O2a, and H haplogroups (62.7%), while 73.2% of maternal lineages comprise the Indian-specific M*, M5, M30, and R* mtDNA haplogroups, with a sporadic occurrence of West Eurasian lineages. Our study reveals that Orissa Brahmins (a higher caste population) have a genetic affinity with Indo-European speakers of Eastern Europe, although the Y-chromosome data show that the genetic distances of populations are not correlated to their position in the caste hierarchy. The high frequency of the O2a haplogroup and absence of East Asian-specific mtDNA lineages in the Juang and Saora suggest that a migration of Austro-Asiatic tribes to mainland India was exclusively male-mediated which occurred during the demographic expansion of Neolithic farmers in southern China. The phylogeographic analysis of mtDNA and Y-chromosomes revealed varied ancestral sources for the diverse genetic components of the populations of Eastern India.  相似文献   

3.
The geographic origin and time of dispersal of Austroasiatic (AA) speakers, presently settled in south and southeast Asia, remains disputed. Two rival hypotheses, both assuming a demic component to the language dispersal, have been proposed. The first of these places the origin of Austroasiatic speakers in southeast Asia with a later dispersal to south Asia during the Neolithic, whereas the second hypothesis advocates pre-Neolithic origins and dispersal of this language family from south Asia. To test the two alternative models, this study combines the analysis of uniparentally inherited markers with 610,000 common single nucleotide polymorphism loci from the nuclear genome. Indian AA speakers have high frequencies of Y chromosome haplogroup O2a; our results show that this haplogroup has significantly higher diversity and coalescent time (17-28 thousand years ago) in southeast Asia, strongly supporting the first of the two hypotheses. Nevertheless, the results of principal component and "structure-like" analyses on autosomal loci also show that the population history of AA speakers in India is more complex, being characterized by two ancestral components-one represented in the pattern of Y chromosomal and EDAR results and the other by mitochondrial DNA diversity and genomic structure. We propose that AA speakers in India today are derived from dispersal from southeast Asia, followed by extensive sex-specific admixture with local Indian populations.  相似文献   

4.
A central question of marine ecology is, how far do larvae disperse? Coupled biophysical models predict that the probability of successful dispersal declines as a function of distance between populations. Estimates of genetic isolation-by-distance and self-recruitment provide indirect support for this prediction. Here, we conduct the first direct test of this prediction, using data from the well-studied system of clown anemonefish (Amphiprion percula) at Kimbe Island, in Papua New Guinea. Amphiprion percula live in small breeding groups that inhabit sea anemones. These groups can be thought of as populations within a metapopulation. We use the x- and y-coordinates of each anemone to determine the expected distribution of dispersal distances (the distribution of distances between each and every population in the metapopulation). We use parentage analyses to trace recruits back to parents and determine the observed distribution of dispersal distances. Then, we employ a logistic model to (i) compare the observed and expected dispersal distance distributions and (ii) determine the relationship between the probability of successful dispersal and the distance between populations. The observed and expected dispersal distance distributions are significantly different (p < 0.0001). Remarkably, the probability of successful dispersal between populations decreases fivefold over 1 km. This study provides a framework for quantitative investigations of larval dispersal that can be applied to other species. Further, the approach facilitates testing biological and physical hypotheses for the factors influencing larval dispersal in unison, which will advance our understanding of marine population connectivity.  相似文献   

5.
Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs (Danaus plexippus) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch''s ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.  相似文献   

6.
In connectivity models, land cover types are assigned cost values characterizing their resistance to species movements. Landscape genetic methods infer these values from the relationship between genetic differentiation and cost distances. The spatial heterogeneity of population sizes, and consequently genetic drift, is rarely included in this inference although it influences genetic differentiation. Similarly, migration rates and population spatial distributions potentially influence this inference. Here, we assessed the reliability of cost value inference under several migration rates, population spatial patterns and degrees of population size heterogeneity. Additionally, we assessed whether considering intra-population variables, here using gravity models, improved the inference when drift is spatially heterogeneous. We simulated several gene flow intensities between populations with varying local sizes and spatial distributions. We then fit gravity models of genetic distances as a function of (i) the ‘true’ cost distances driving simulations or alternative cost distances, and (ii) intra-population variables (population sizes, patch areas). We determined the conditions making the identification of the ‘true’ costs possible and assessed the contribution of intra-population variables to this objective. Overall, the inference ranked cost scenarios reliably in terms of similarity with the ‘true’ scenario (cost distance Mantel correlations), but this ‘true’ scenario rarely provided the best model goodness of fit. Ranking inaccuracies and failures to identify the ‘true’ scenario were more pronounced when migration was very restricted (<4 dispersal events/generation), population sizes were most heterogeneous and some populations were spatially aggregated. In these situations, considering intra-population variables helps identify cost scenarios reliably, thereby improving cost value inference from genetic data.  相似文献   

7.
The genetic impact associated to the Neolithic spread in Europe has been widely debated over the last 20 years. Within this context, ancient DNA studies have provided a more reliable picture by directly analyzing the protagonist populations at different regions in Europe. However, the lack of available data from the original Near Eastern farmers has limited the achieved conclusions, preventing the formulation of continental models of Neolithic expansion. Here we address this issue by presenting mitochondrial DNA data of the original Near-Eastern Neolithic communities with the aim of providing the adequate background for the interpretation of Neolithic genetic data from European samples. Sixty-three skeletons from the Pre Pottery Neolithic B (PPNB) sites of Tell Halula, Tell Ramad and Dja''de El Mughara dating between 8,700–6,600 cal. B.C. were analyzed, and 15 validated mitochondrial DNA profiles were recovered. In order to estimate the demographic contribution of the first farmers to both Central European and Western Mediterranean Neolithic cultures, haplotype and haplogroup diversities in the PPNB sample were compared using phylogeographic and population genetic analyses to available ancient DNA data from human remains belonging to the Linearbandkeramik-Alföldi Vonaldiszes Kerámia and Cardial/Epicardial cultures. We also searched for possible signatures of the original Neolithic expansion over the modern Near Eastern and South European genetic pools, and tried to infer possible routes of expansion by comparing the obtained results to a database of 60 modern populations from both regions. Comparisons performed among the 3 ancient datasets allowed us to identify K and N-derived mitochondrial DNA haplogroups as potential markers of the Neolithic expansion, whose genetic signature would have reached both the Iberian coasts and the Central European plain. Moreover, the observed genetic affinities between the PPNB samples and the modern populations of Cyprus and Crete seem to suggest that the Neolithic was first introduced into Europe through pioneer seafaring colonization.  相似文献   

8.
Cavalli‐Sforza and coauthors originally explored the genetic variation of modern humans throughout the world and observed an overall east‐west genetic gradient in Asia. However, the specific environmental and population genetics processes causing this gradient were not formally investigated and promoted discussion in recent studies. Here we studied the influence of diverse environmental and population genetics processes on Asian genetic gradients and identified which could have produced the observed gradient. To do so, we performed extensive spatially‐explicit computer simulations of genetic data under the following scenarios: (a) variable levels of admixture between Paleolithic and Neolithic populations, (b) migration through long‐distance dispersal (LDD), (c) Paleolithic range contraction induced by the last glacial maximum (LGM), and (d) Neolithic range expansions from one or two geographic origins (the Fertile Crescent and the Yangzi and Yellow River Basins). Next, we estimated genetic gradients from the simulated data and we found that they were sensible to the analysed processes, especially to the range contraction induced by LGM and to the number of Neolithic expansions. Some scenarios were compatible with the observed east‐west genetic gradient, such as the Paleolithic expansion with a range contraction induced by the LGM or two Neolithic range expansions from both the east and the west. In general, LDD increased the variance of genetic gradients among simulations. We interpreted the obtained gradients as a consequence of both allele surfing caused by range expansions and isolation by distance along the vast east‐west geographic axis of this continent.  相似文献   

9.
The Neolithic transition has been widely debated particularly regarding the extent to which this revolution implied a demographic expansion from the Near East. We attempted to shed some light on this process in northeastern Iberia by combining ancient DNA (aDNA) data from Early Neolithic settlers and published DNA data from Middle Neolithic and modern samples from the same region. We successfully extracted and amplified mitochondrial DNA from 13 human specimens, found at three archaeological sites dated back to the Cardial culture in the Early Neolithic (Can Sadurní and Chaves) and to the Late Early Neolithic (Sant Pau del Camp). We found that haplogroups with a low frequency in modern populations-N* and X1-are found at higher frequencies in our Early Neolithic population (~31%). Genetic differentiation between Early and Middle Neolithic populations was significant (F(ST) ~0.13, P<10(-5)), suggesting that genetic drift played an important role at this time. To improve our understanding of the Neolithic demographic processes, we used a Bayesian coalescence-based simulation approach to identify the most likely of three demographic scenarios that might explain the genetic data. The three scenarios were chosen to reflect archaeological knowledge and previous genetic studies using similar inferential approaches. We found that models that ignore population structure, as previously used in aDNA studies, are unlikely to explain the data. Our results are compatible with a pioneer colonization of northeastern Iberia at the Early Neolithic characterized by the arrival of small genetically distinctive groups, showing cultural and genetic connections with the Near East.  相似文献   

10.
North China and South Siberia, populated by Altaic- and Sino-Tibetan-speaking populations, possess extensive ethnolinguistic diversity and serve as the crossroads for the initial peopling of America and western–eastern transcontinental communication. However, the population genetic structure and admixture history of northern East Asians remain poorly understood due to a lack of genome-wide data, especially for Mongolic-speaking people in China. We genotyped genome-wide single nucleotide polymorphisms for 510 individuals from 38 Mongolic, Tungusic, and Sinitic-speaking populations. We first explored the shared alleles and haplotypes within the studied groups. We then merged with 3508 published modern and ancient Eurasian individuals to reconstruct the deep evolutionary and natural selection history of northern East Asians. We identified genetic substructures within Altaic-speaking populations: Western Turkic people harbored more western Eurasian-related ancestry; Northern Mongolic people in Siberia and eastern Tungusic people in Amur River Basin (ARB) possessed a majority of Neolithic ARB related ancestry; Southern Mongolic people in China possessed apparent genetic influence from Neolithic Yellow River Basin (YRB) farmers. Additionally, we found the differentiated admixture history between western and eastern Mongolians and geographically close Northeast Hans: the former received a genetic impact from western Eurasians, and the latter retained the primary Neolithic YRB and ARB ancestry. Moreover, we demonstrated that Kalmyk people from the northern Caucasus Mountains possessed a strong genetic affinity with Neolithic Mongolian Plateau (MP) people, supporting the hypothesis of their eastern Eurasian origin and long-distance migration history. We also illuminated that historical pastoral empires in the MP contributed considerably to the gene pool of northern Mongolic people but rarely to the southern ones. We finally found natural selection signatures in Mongolians associated with alcohol metabolism. Our results demonstrated that the Neolithic ancestral sources from the MP or ARB played an important role in spreading Altaic populations and languages. The observed multisources of genetic diversity contributed significantly to the extensive ethnolinguistic diversity in northern East Asia.  相似文献   

11.
Two alternative models have been proposed to explain the spread of agriculture in Europe during the Neolithic period. The demic diffusion model postulates the spreading of farmers from the Middle East along a Southeast to Northeast axis. Conversely, the cultural diffusion model assumes transmission of agricultural techniques without substantial movements of people. Support for the demic model derives largely from the observation of frequency gradients among some genetic variants, in particular haplogroups defined by single nucleotide polymorphisms (SNPs) in the Y-chromosome. A recent network analysis of the R-M269 Y chromosome lineage has purportedly corroborated Neolithic expansion from Anatolia, the site of diffusion of agriculture. However, the data are still controversial and the analyses so far performed are prone to a number of biases. In the present study we show that the addition of a single marker, DYSA7.2, dramatically changes the shape of the R-M269 network into a topology showing a clear Western-Eastern dichotomy not consistent with a radial diffusion of people from the Middle East. We have also assessed other Y-chromosome haplogroups proposed to be markers of the Neolithic diffusion of farmers and compared their intra-lineage variation—defined by short tandem repeats (STRs)—in Anatolia and in Sardinia, the only Western population where these lineages are present at appreciable frequencies and where there is substantial archaeological and genetic evidence of pre-Neolithic human occupation. The data indicate that Sardinia does not contain a subset of the variability present in Anatolia and that the shared variability between these populations is best explained by an earlier, pre-Neolithic dispersal of haplogroups from a common ancestral gene pool. Overall, these results are consistent with the cultural diffusion and do not support the demic model of agriculture diffusion.  相似文献   

12.
There is general agreement among scientists about a recent (less than 200,000 yrs ago) African origin of anatomically modern humans, whereas there is still uncertainty about whether, and to what extent, they admixed with archaic populations, which thus may have contributed to the modern populations' gene pools. Data on cranial morphology have been interpreted as suggesting that, before the main expansion from Africa through the Near East, anatomically modern humans may also have taken a Southern route from the Horn of Africa through the Arabian peninsula to India, Melanesia and Australia, about 100,000 yrs ago. This view was recently supported by archaeological findings demonstrating human presence in Eastern Arabia >90,000 yrs ago. In this study we analyzed genetic variation at 111,197 nuclear SNPs in nine populations (Kurumba, Chenchu, Kamsali, Madiga, Mala, Irula, Dalit, Chinese, Japanese), chosen because their genealogical relationships are expected to differ under the alternative models of expansion (single vs. multiple dispersals). We calculated correlations between genomic distances, and geographic distances estimated under the alternative assumptions of a single dispersal, or multiple dispersals, and found a significantly stronger association for the multiple dispersal model. If confirmed, this result would cast doubts on the possibility that some non-African populations (i.e., those whose ancestors expanded through the Southern route) may have had any contacts with Neandertals.  相似文献   

13.
Deep common ancestry of indian and western-Eurasian mitochondrial DNA lineages   总被引:22,自引:0,他引:22  
About a fifth of the human gene pool belongs largely either to Indo-European or Dravidic speaking people inhabiting the Indian peninsula. The 'Caucasoid share' in their gene pool is thought to be related predominantly to the Indo-European speakers. A commonly held hypothesis, albeit not the only one, suggests a massive Indo-Aryan invasion to India some 4,000 years ago [1]. Recent limited analysis of maternally inherited mitochondrial DNA (mtDNA) of Indian populations has been interpreted as supporting this concept [2] [3]. Here, this interpretation is questioned. We found an extensive deep late Pleistocene genetic link between contemporary Europeans and Indians, provided by the mtDNA haplogroup U, which encompasses roughly a fifth of mtDNA lineages of both populations. Our estimate for this split is close to the suggested time for the peopling of Asia and the first expansion of anatomically modern humans in Eurasia [4] [5] [6] [7] [8] and likely pre-dates their spread to Europe. Only a small fraction of the 'Caucasoid-specific' mtDNA lineages found in Indian populations can be ascribed to a relatively recent admixture.  相似文献   

14.
Tobacco blue mold, caused by Peronospora tabacina, is an oomycete plant pathogen that causes yearly epidemics in tobacco (Nicotiana tabacum) in the United States and Europe. The genetic structure of P. tabacina was examined to understand genetic diversity, population structure and patterns of migration. Two nuclear loci, Igs2 and Ypt1, and one mitochondrial locus, cox2, were amplified, cloned and sequenced from fifty‐four isolates of P. tabacina from the United States, Central America–Caribbean–Mexico (CCAM), Europe and the Middle East (EULE). Cloned sequences from the three genes showed high genetic variability across all populations. Nucleotide diversity and the population mean mutation parameter per site (Watterson's theta) were higher in EULE and CCAM and lower in U.S. populations. Neutrality tests were significant and the equilibrium model of neutral evolution was rejected, indicating an excess of recent mutations or rare alleles. Hudson's Snn tests were performed to examine population subdivision and gene flow among populations. An isolation‐with‐migration analysis (IM) supported the hypothesis of long‐distance migration of P. tabacina from the Caribbean region, Florida and Texas into other states in the United States. Within the European populations, the model documented migration from North Central Europe into western Europe and Lebanon, and migration from western Europe into Lebanon. The migration patterns observed support historical observations about the first disease introductions and movement in Europe. The models developed are applicable to other aerial dispersed emerging pathogens and document that high‐evolutionary‐risk plant pathogens can move over long distances to cause disease due to their large effective population size, population expansion and dispersal.  相似文献   

15.
This article uses metric and nonmetric dental data to test the "two-layer" or immigration hypothesis whereby Southeast Asia was initially occupied by an "Australo-Melanesian" population that later underwent substantial genetic admixture with East Asian immigrants associated with the spread of agriculture from the Neolithic period onwards. We examined teeth from 4,002 individuals comprising 42 prehistoric and historic samples from East Asia, Southeast Asia, Australia, and Melanesia. For the odontometric analysis, dental size proportions were compared using factor analysis and Q-mode correlation coefficients, and overall tooth size was also compared between population samples. Nonmetric population affinities were estimated by Smith's distances, using the frequencies of 16 tooth traits. The results of both the metric and nonmetric analyses demonstrate close affinities between recent Australo-Melanesian samples and samples representing early Southeast Asia, such as the Early to Middle Holocene series from Vietnam, Malaysia, and Flores. In contrast, the dental characteristics of most modern Southeast Asians exhibit a mixture of traits associated with East Asians and Australo-Melanesians, suggesting that these populations were genetically influenced by immigrants from East Asia. East Asian metric and/or nonmetric traits are also found in some prehistoric samples from Southeast Asia such as Ban Kao (Thailand), implying that immigration probably began in the early Neolithic. Much clearer influence of East Asian immigration was found in Early Metal Age Vietnamese and Sulawesi samples. Although the results of this study are consistent with the immigration hypothesis, analysis of additional Neolithic samples is needed to determine the exact timing of population dispersals into Southeast Asia.  相似文献   

16.
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two‐thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift. Am J Phys Anthropol 150:551–564, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The dispersal and history of species affects their genetic population structure at both small and large geographical scales. The common whelk, Buccinum undatum, is a widespread subtidal gastropod in the North Atlantic that has no planktonic larvae and has thus limited dispersal capacity. The snail, which has been harvested by humans for centuries, is highly variable in morphology. To evaluate the population structure in the rich fishing grounds in western Iceland and its divergence from samples across the Atlantic, genetic patterns based on sequence variation in two mitochondrial (mt)DNA genes (COI and 16S) and five microsatellites were studied and compared with variation in populations from both sides of the Atlantic. Significant differences in allele and haplotype frequencies were found among samples separated by short distances along the coast of Iceland. Partition of the variation showed larger variance among samples obtained from distant regions than from neighbouring sites and genetic distances were correlated with geographical distance among populations in Europe. Phylogeographic patterns in mtDNA reveal different monophyletic lineages on both sides of the Atlantic, which predate the onset of the Ice Age and which may constitute cryptic species. Similar micro‐ and macrogeographical patterns were observed for the mtDNA and microsatellite markers, despite high frequencies of null alleles. Bayesian skyline reconstructions of the demographic history and mismatch distributions suggest that, although sizes of some populations were unaffected by Ice Age glaciations, others show signs of expansion after the Last Glacial Maximum. These phylogeographical patterns are consistent with patterns expected for low dispersal species that have survived in allopatric glacial refugial populations on both sides of the Atlantic and in deep‐sea refugia within each continent. The observed genetic structure has implications for conservation and sustainable management of the harvested populations. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 145–159.  相似文献   

18.
Knowledge of the rate, distance and direction of dispersal within and among breeding areas is required to understand and predict demographic and genetic connectivity and resulting population and evolutionary dynamics. However dispersal rates, and the full distributions of dispersal distances and directions, are rarely comprehensively estimated across all spatial scales relevant to wild populations. We used re‐sightings of European Shags Phalacrocorax aristotelis colour‐ringed as chicks on the Isle of May (IoM), UK, to quantify rates, distances and directions of dispersal from natal to subsequent breeding sites both within IoM (within‐colony dispersal) and across 27 other breeding colonies covering 1045 km of coastline (among‐colony dispersal). Additionally, we used non‐breeding season surveys covering 895 km of coastline to estimate breeding season detection probability and hence potential bias in estimated dispersal parameters. Within IoM, 99.6% of individuals dispersed between their natal and observed breeding nest‐site. The distribution of within‐colony dispersal distances was right‐skewed; mean distance was shorter than expected given random settlement within IoM, yet some individuals dispersed long distances within the colony. The distribution of within‐colony dispersal directions was non‐uniform but did not differ from expectation given the spatial arrangement of nest‐sites. However, 10% of all 460 colour‐ringed adults that were located breeding had dispersed to a different colony. The maximum observed dispersal distance (170 km) was much smaller than the maximum distance surveyed (690 km). The distribution of among‐colony dispersal distances was again right‐skewed. Among‐colony dispersal was directional, and differed from random expectation and from the distribution of within‐colony dispersal directions. Non‐breeding season surveys suggested that the probability of detecting a colour‐ringed adult at its breeding location was high in the northeastern UK (98%). Estimated dispersal rates and distributions were therefore robust to incomplete detection. Overall, these data demonstrate skewed and directionally divergent dispersal distributions across small (within‐colony) and large (among‐colony) scales, indicating that dispersal could create genetic and demographic connectivity within the study area.  相似文献   

19.
Several recent studies have shown that amphibian populations may exhibit high genetic subdivision in areas with recent fragmentation and urban development. Less is known about the potential for genetic differentiation in continuous habitats. We studied genetic differentiation of red-backed salamanders (Plethodon cinereus) across a 2-km transect through continuous forest in Virginia, USA. Mark-recapture studies suggest very little dispersal for this species, whereas homing experiments and post-Pleistocene range expansion both suggest greater dispersal abilities. We used six microsatellite loci to examine genetic population structure and differentiation between eight subpopulations of red-backed salamanders at distances from 200 m to 2 km. We also used several methods to extrapolate dispersal frequencies and test for sex-biased dispersal. We found small, but detectable differentiation among populations, even at distances as small as 200 m. Differentiation was closely correlated with distance and both Mantel tests and assignment tests were consistent with an isolation-by-distance model for the population. Extrapolations of intergenerational variance in spatial position (sigma(2)<15 m(2)) and pair-wise dispersal frequencies (4 Nm < 25 for plots separated by 300 m) both suggest limited gene flow. Additionally, tests for sex-biased dispersal imply that dispersal frequency is similarly low for both sexes. We suggest that these low levels of gene flow and the infrequent dispersal observed in mark-recapture studies may be reconciled with homing ability and range expansion if dispersing animals rarely succeed in breeding in saturated habitats, if dispersal is flexible depending on the availability of habitat, or if dispersal frequency varies across the geographic range of red-backed salamanders.  相似文献   

20.
Abstract: Dispersal distances and their distribution pattern are important to understanding such phenomena as disease spread and gene flow, but oftentimes dispersal characteristics are modeled as a fixed trait for a given species. We found that dispersal distributions differ for spring and autumn dispersals of yearling male white-tailed deer (Odocoileus virginianus) but that combined data can be adequately modeled based on a log-normal distribution. We modeled distribution of dispersal distances from 3 distinct populations in Pennsylvania and Maryland, USA, based on the relationship between percent forest cover and mean dispersal distance and the relationship between mean and variance of dispersal distances. Our results suggest distributions of distances for dispersing yearling male white-tailed deer can be modeled by simply measuring a readily obtained landscape metric, percent forest cover, which could be used to create generalized spatially explicit disease or gene flow models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号