首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The results from this study showed that Jerusalem artichoke juice can be used for the production of very enriched fructose syrup by selective conversion of glucose to ethanol in a continuous process using immobilized cells ofSaccharomyces cerevisiae ATCC 36859. The product contained up to 99% of the total carbohydrates as fructose compared to 76% in the feed. Using Jerusalem artichoke juice supplemented with some glucose a product was obtained with 7.5% w/v ethanol which made ethanol recovery economically favourable. It was found that some fructose was consumed in these continuous processes; the glucose/fructose conversion rate ratio was regulated by the glucose concentration in the product stream.  相似文献   

2.
Summary The study shows that the yeastSaccharomyces cerevisiae ATCC 36859 can be successfully used for the production of fructose syrup from glucose-fructose mixtures or from Jerusalem artichoke juice by the conversion of glucose to ethanol. During these processes fructose concentration was unchanged.Ethanol yield (YP/S), based on glucose consumed in Jerusalem artichoke juice, and ethanol concentration were 0.428 g/g and 1.7% (w/v) respectively. When the juice was supplemented with glucose higher ethanol concentrations were attained but with lower ethanol yields.  相似文献   

3.
A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S. cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. By encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes.  相似文献   

4.
The kinetics of batch fermentation during the growth of S. cerevisiae ATCC 36859 was studied in various glucose/fructose mixtures. It was found that the growth is inhibited equally by glucose and fructose even though fructose is not consumed to any large extent by the yeast under the conditions tested here. The inhibition of growth by the substrate and ethanol is represented by linear equations. These equations were combined with the MONOD expression in order to formulate equations for the biomass growth, glucose and fructose consumption and ethanol production. Parameter estimates were obtained by fitting these equations to batch fermentation data and so developing models which indicate that the growth is completely inhibited when 62 g/l ethanol is produced by the yeast, while glucose consumption and ethanol production continue up to an ethanol concentration of 152 g/l. Products containing a high concentration of fructose are best produced by using a high initial biomass concentration.  相似文献   

5.
Summary A continuous single stage yeast fermentation with cell recycle by ultrafiltration membranes was operated at various recycle ratios. Cell concentration was increased 10.6 times, and ethanol concentration and fermentor productivity both 5.3 times with 97% recycle as compared to no recycle. Both specific growth rate and specific ethanol productivity followed the exponential ethanol inhibition form (specific productivity was constant up to 37.5 g/l of ethanol before decreasing), similar to that obtained without recycle, but with greater inhibition constants most likely due to toxins retained in the system at hight recycle ratios.By analyzing steady state data, the fractions of substrate used for cell growth, ethanol formation, and what which were wasted were accounted for. Yeast metabolism varied from mostly aerobic at low recycle ratios to mostly anaerobic at high recycle ratios at a constant dissolved oxygen concentration of 0.8 mg/kg. By increasing the cell recycle ratio, wasted substrate was reduced. When applied to ethanol fermentation, the familiar terminology of substrate used for Maintenance must be used with caution: it is not the same as the wasted substrate reported here.A general method for determining the best recycle ratio is presented; a balance among fermentor productivity, specific productivity, and wasted substrate needs to be made in recycle systems to approach an optimal design.Nomenclature B Bleed flow rate, l/h - C T Concentration of toxins, arbitrary units - D Dilution rate, h-1 - F Filtrate or permeate flow rate, removed from system, l/h - F o Total feed flow rate to system, l/h - K s Monod form constant, g/l - P Product (ethanol) concentration, g/l - P o Ethanol concentration in feed, g/l - PP} Adjusted product concentration, g/l - PD Fermentor productivity, g/l-h - R Recycle ratio, F/F o - S Substrate concentration in fermentor, g/l - S o Substrate concentration in feed, g/l - V Working volume of fermentor, l - V MB Viability based on methylene blue test - X Cell concentration, g dry cell/l - X o Cell concentration in feed, g/l - Y ATP Cellular yield from ATP, g cells/mol ATP - Y ATPS Yield of ATP from substrate, mole ATP/mole glucose - Y G True growth yield or maximum yield of cells from substrate, g cell/g glucose - Y P Maximum theoretical yield of ethanol from glucose, 0.511 g ethanol/g glucose - Y P/S Experimental yield of product from substrate, g ethanol/g glucose - Y x/s Experimental yield of cells from substrate, g cell/g glucose - S NP/X Non-product associated substrate utilization, g glucose/g cell - k 1, k2, k3, k4 Constants - k 1 APP , k 2 APP Apparent k 1, k3 - k 1 TRUE True k 1 - m Maintenance coefficient, g glucose/g cell-h - m * Coefficient of substrate not used for growth nor for ethanol formation, g glucose/g cell-h - Specific growth rate, g cells/g cells-h, reported as h-1 - m Maximum specific growth rate, h-1 - v Specific productivity, g ethanol/g cell-h, reported as h-1 - v m Maximum specific productivity, h-1  相似文献   

6.
Summary Fructokinase negativeZymomonas mobilis UQM 2864, was co-immobilised with invertase in alginate and incubated on sucrose-based media in batch and fedbatch culture. The highest fructose concentration achieved was 138 g/l using fed-batch cultivation with sugar-cane syrup-simultaneously producing 79.9 g/l or 10.1% (v/v) ethanol in less than 24 hours. The ethanol and fructose yields were 95 and 84% respectively. Co-immobilisation resulted in faster fermentation times, particularly for the batch fermentations, and complete utilisation of substrate.  相似文献   

7.
Summary Zymomonas mobilis strain ZM4 was used for ethanol production from fructose (100 g/l) in continuous culture with a mineral (containing Ca pantothenate) or a rich (containing yeast extract) mediium. With both media high conversion yields were observed but the ethanol productivity was limited by the low biomass content of the fermentor. A new flocculent strain of Z.mobilis (ZM4F) was cultivated in a CSTR with an internal settler and showed a maximal productivity of 93 g/l.h (fructose conversion of 80%). When the fructose conversion was 96% an ethanol productivity of 85.6 g/l.h with an ethanol yield of 0.49 g/g (96% of theoretical) was observed.  相似文献   

8.
Lactulose production from lactose and fructose was investigated with several commercial -galactosidases. The enzyme from Kluyveromyces lactis exhibited the highest lactulose productivity among the -galactosidases tested. The reaction conditions for lactulose production were optimized using cells that had been permeabilized by treatment with 50% (v/v) ethanol: cell concentration, 10.4 g l–1; concentration of substrates, 40% (w/v) lactose and 20% (w/v) fructose; temperature, 60°C; pH 7.0. Under these conditions, the permeabilized cells produced approximately 20 g l–1 lactulose in 3 h with a lactulose productivity of 6.8 g l–1 h–1. These results represent 1.3- and 2.1-fold increases in lactulose concentration and productivity compared with untreated washed cells. This is the first reported trial of enzymatic synthesis of lactulose using permeabilized yeast cells.  相似文献   

9.
Fructose, glucose, and mannose were treated with subcritical aqueous ethanol for ethanol concentrations ranging from 0 to 80% (v/v) at 180–200 °C. The aldose–ketose isomerization was more favorable than ketose–aldose isomerization and glucose–mannose epimerization. The isomerization of the monosaccharides was promoted by the addition of ethanol. In particular, mannose was isomerized most easily to fructose in subcritical aqueous ethanol. The apparent equilibrium constants for the isomerizations of mannose to fructose, Keq,M→F, and glucose to fructose, Keq,G→F, were independent of ethanol concentration and increased with increasing temperature. Moreover, the Keq,M→F value was much larger than the Keq,G→F value. The enthalpies for the isomerization of mannose to fructose, ΔHM→F, and glucose to fructose, ΔHG→F, were estimated to be 18 and 24 kJ/mol, respectively, according to van’t Hoff equation. Subcritical aqueous ethanol can be used to produce fructose from glucose and mannose efficiently.  相似文献   

10.
The production of ethanol and enriched fructose syrups from a synthetic medium with various sucrose concentrations using the mutant Saccharomyces cerevisiae ATCC 36858 was investigated. In batch tests, fructose yields were above 90% of theoretical values for the sucrose concentrations between 35 g/l and 257 g/l. The specific growth rates and biomass yields were from 0.218 to 0.128 h(-1) and from 0.160 to 0.075 g biomass/g of glucose and fructose consumed, respectively. Ethanol yields were in the range of 72 to 85% of theoretical value when sucrose concentrations were above 81 g/l. The volumetric ethanol productivity was 2.23 g ethanol/(l h) in a medium containing 216 g/l sucrose. Fructo-oligosaccharides and glycerol were also produced in the process. A maximum fructo-oligosaccharides concentration (up to 9 g/l) was attained in the 257 g/l sucrose medium in the first 7 h of the fermentation. These sugars started to be consumed when the concentrations of sucrose in the media were less than 30% of its initial values. The fructo-oligosaccharides mixture was composed of 6-kestose (61.5%), neokestose (29.7%) and 1-kestose (8.8%). The concentration of glycerol produced in the process was less than 9 g/l. These results will be useful in the production of enriched fructose syrups and ethanol using sucrose-based raw materials.  相似文献   

11.
Summary Simultaneous production of ethanol and fructose enriched syrups was obtained from Jerusalem artichoke extract using a Saccharomyces diastaticus flocculating yeast in a continuous gas-lift reactor with internal biomass recycle. This allowed the production of 42 g/L of ethanol and 70 g/L of inulin containing up to 92% fructose (fructose/glucose ratio of 11). These results can be compared to the batch and chemostat fermentations which gave a higher ethanol concentration but a lower fructose enrichment. Mass transfert limitations can explain both the productivity decrease and the selectivity improvement in the gas-lift reactor.  相似文献   

12.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a fructose negative mutant of Zymomonas mobilis is analysed using a recently described methodology (Ait-Abdelkader and Baratti, Biotechnol. Tech. 1993,329–334) based on polynomial fitting and calculation of instantaneous and overall parameters. These parameters are utilized to describe this mixed-substrate mixed-product fermentation.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qg specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - YSor/F sorbitol yield on fructose, (g/g) - YP/G ethanol yield on glucose, (g/g)  相似文献   

13.
Summary A new approach for continuous production of ethanol was developed using a Hollow fiber fermentor (HFF). Saccharomyces cerevisiae cells were packed into the shell-side of a hollow fiber module. Using 100 g/l glucose in the feed gave an optimum ethanol productivity, based on total HFF volume, of 40 g ethanol/l/h at a dilution rate of 3.0 h-1. Under these conditions, glucose utilization was 30%. However, at 85% glucose utilization the productivity was 10 g ethanol/l/h. This compares to batch fermentor productivity of 2.1 g ethanol/l/h at 100% glucose utilization.  相似文献   

14.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a glucose negative mutant ofZymomonas mobilis was monitored. The results were analyzed using a recently described method based on polynomial fitting and calculation of intantaneous and overall parameters. These parameters described well the physiology of this mixed-substrate mixed-product fermentation. Growth of the mutant was greatly inhibited on this medium. Fructose was quantitatively converted into sorbitol while glucose was oxidized into gluconic acid .This latter product was utilized as substrate for cell growth and ethanol production.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qG specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - ySor/f sorbitol yield on fructose, g/g - YP/G ethanol yield on glucose, g/g  相似文献   

15.
Large amounts of low-quality dates produced worldwide are wasted. Here, highly concentrated fructose syrups were produced via selective fermentation of date extracts with Saccharomyces cerevisiae. Syrups with 95.4–99.9 % (w/w) fructose yields were obtained from date extracts having an initial sugar range of 49–374 g/l without media supplementation; the corresponding ethanol yields were between 69 and 52 % (w/w). At 470 g initial sugars/l, fructose and ethanol yields were 84 and 47 % (w/w), respectively, and the product contained 62 % (w/w) fructose, which is higher than the widely available commercial 42 and 55 % (w/w) high fructose corn syrups. The commercial potential for conversion of waste dates to high-value products is thus demonstrated.  相似文献   

16.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

17.
Summary Z.mobilis is strain ZM4 was grown on 250 g/l fructose and sucrose media in batch culture and on 100 and 150 g/l sucrose media in continuous culture. With fructose, a significant reduction in the growth rate and the cell yield was apparent although the other kinetic parameters were similar to those previously reported for fermentation of glucose. With sucrose the major differences were a reduction in ethanol yield, (due to levan formation) and a lower final ethanol concentration. Ethanol inhibition of sucrose metabolism occurred at relatively low ethanol concentrations compared to those inhibiting glucose metabolism.  相似文献   

18.
When the immobilized cells are employed in packed-bed bioreactors several problems appear. To overcome these drawbacks, a new bioreactor based on the use of pulsed systems was developed [1]. In this work, we study the glucose fermentation by immobilized Saccharomyces cerevisiae in a packed-bed bioreactor. A comparative study was then carried out for continuous fermentation in two packed-bed bioreactors, one of them with pulsed flow. The determination of the axial dispersion coefficients indicates that by introducing the pulsation, the hydraulic behaviour is closer to the plug flow model. In both cases, the residence time tested varied from 0.8 to 2.6 h. A higher ethanol concentration and productivity (increases up to 16%) were achieved with the pulsated reactors. The volumes occupied by the CO2 were 5.22% and 9.45% for fermentation with/without pulsation respectively. An activity test of the particles from the different sections revealed that the concentration and viability of bioparticles from the two bioreactors are similar. From the results we conclude that the improvements of the process are attributable to a mechanical effect rather than to physiological changes of microorganisms.List of Symbols D m2/s dispersion coefficient - K is l/g inhibition substrate constant - K ip l/g inhibition ethanol constant - K s g/l Apparent affinity constant - P g/l ethanol concentration - q p g/(gh) specific ethanol productivity - Q p g/(lh) overall ethanol productivity - q s g/(gh) specific glucose consumption rate - Q s g/(lh) glucose consumption rate - S g/l residual glucose concentration - S(in0) g/l initial glucose concentration - V max g/(lh) maximum rate - Y p/s g/g yield in product  相似文献   

19.
Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH4)2SO4, 0.09 % yeast extract, 0.05 % KH2PO4, and 0.05 % MgSO4·7H2O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield.  相似文献   

20.
Summary Two different quality types of sugar-cane molasses containing a total sugar content of 48%–50% (w/v) and 35%–42% (w/v) were investigated for Zymomonas biothanol production. Molasses concentrations of up to 250 g/l (1:3 dilution) were successfully fermented within 24 h despite a higher salt concentration in the lower grade molasses. Higher molasses concentrations (300 g/l) led to fructose accumulation. The addition of sucrose to a final sugar concentration of 15% (w/v) led to 10% (v/v) ethanol with conversion efficiencies up to 96%. Sorbitol levels were negligible, but increased up to tenfold upon addition of invertase. Offprint requests to: H. W. Doelle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号