首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to evaluate the potential benefit of two different techniques for the provision of tissue aerobiosis upon cold preservation of marginal livers from non-heart beating donors using a recently developed improved preservation solution.Rat livers were harvested 30 min after cardiac arrest, flushed via the portal vein and cold-stored in HTK or modified HTK-solution (Custodiol-N) for 18 h at 4 °C. Other organs were flushed with Custodiol-N and subjected to aerobic conditions by either vascular systemic oxygen persufflation (VSOP) of the cold stored organ or hypothermic machine perfusion (HMP) with oxygenated Custodiol-N. Viability of the livers was assessed after 18 h of preservation by warm reperfusion in vitro for 120 min.Free radical mediated lipid peroxidation was significantly abrogated by the use of Custodiol-N in all groups compared with HTK. Custodiol-N improved enzyme leakage upon reperfusion and histological integrity, but had no impact on functional recovery (bile production, energetic status). However, VSOP further minimized enzyme release during the whole reperfusion period, led to a rise in hepatic bile production and enhanced recovery of energy charge (p < 0.05, resp. vs Custodiol-N). Histological appearance was concordantly improved in VSOP. During the first 45 min of reperfusion, leakage of ALT and LDH was also reduced by MP but deteriorated thereafter and became significantly higher compared to Custodiol-N at the end of the experiment. In conclusion, the results of the present study recommend the use of gaseous oxygen persufflation to improve tissue integrity and functional recovery of predamaged livers.  相似文献   

2.
Minor T  Lüer B  Efferz P 《Cryobiology》2011,63(2):84-89

Background

Hypothermic machine preservation (HMP) is currently reconsidered as alternative to standard cold storage of organs from non-heart-beating donors. The present study was aimed at investigating the possible synergistic effect of HMP and the addition of dopamine to the circulating perfusate during preservation.

Methods

Cardiac arrest was induced in male Wistar rats (250–300 g) by phrenotomy. Thirty minutes later livers were flushed via the portal vein and subjected to 20 h of HMP at 5 ml/min at 4 °C. During HMP the preservation solution was equilibrated with 100% oxygen and dopamine was added at 0, 10, 50 or 100 μM (D0, D10, D50, D100; n = 6 resp.). Graft viability was assessed thereafter upon warm reperfusion in vitro for 2 h.

Results

During HMP, D50 and D100 significantly reduced hepatic release of ALT to about 50%. No influence of dopamine was found on vascular resistance, oxygen uptake or lactate production at any concentration. D50 significantly reduced enzyme release during reperfusion (∼50%), enhanced bile flow and oxygen consumption. D10 was less effective while D100 even rose enzyme release compared with D0.Enhanced oxygen free radical mediated lipid peroxidation (LPO), found in the tissue of D0 livers was significantly reduced by D50; D50 significantly abrogated molecular upregulation of vWillebrand factor upon reperfusion suggesting vascular protection of the endothelial cell.

Conclusion

Efficiency of HMP might be increased by stimulating livers with dopamine during ex vivo preservation, limiting vascular side effects and improving functional recovery upon early reperfusion.  相似文献   

3.

Background

The benefit of carbon monoxide as applied by controlled, continuous gaseous persufflation during liver preservation on postischemic graft recovery was investigated in an isolated rat liver model.

Methods

Livers from male Wistar rats were retrieved 30 min after cardiac arrest of the donor and subjected to 18 h of cold storage. Some grafts were subjected to gaseous persufflation with carbon monoxide (CO, dissolved in nitrogen) during static cold storage at a concentration of 50 ppm or 250 ppm. Graft viability was assessed thereafter upon warm reperfusion in vitro.

Results

CO-persufflation significantly reduced cellular enzyme loss (maximal at 50 ppm) and functional recovery (bile production and energy charge) upon reperfusion by about 50%. The effect was associated with a reduction of free radical-induced lipid peroxidation, lower vascular perfusion resistance, and improved mitochondrial ultrastructure.

Conclusion

Viability of cold stored liver grafts can be notably augmented by gaseous ex vivo application of low dose CO to the isolated organ.  相似文献   

4.
5.

Objectives

Especially for preservation of marginal donor organs, machine perfusion (MP) and retrograde oxygen persufflation (ROP) are alternatives to cold storage (CS). Using a porcine kidney autotransplantation model we compared metabolic and morphologic effects of CS, ROP, and MP on kidneys exposed to warm ischemia.

Methods

Kidneys of 21 pigs were exposed in situ to warm ischemia for 60 min. The kidneys were randomly allocated to three experimental groups, each receiving a 4-h treatment of either cold storage, machine perfusion, or retrograde oxygen persufflation. Tissue samples were examined for malondialdehyde and histological changes. Daily blood samples were examined for creatinine levels.

Results

Seven days after transplantation, the plasma creatinine levels in the CS and MP groups were still significantly elevated above the baseline values. In the ROP group, all animals exhibited nearly normal creatinine levels. Malondialdehyde, an indicator of lipidperoxidation, was dramatically increased in the machine perfused kidneys on day 7, whereas the malondialdehyde levels in the other two groups were near normal values. The MP kidneys exhibited the most striking histological changes.

Conclusion

Though MP has been well introduced in organ transplantation, in our opinion, it must still be optimized and standardized. It is necessary to clarify questions such as whether there is a need for oxygenation during perfusion, the length of perfusion, the impact of pressure, and the effects of additional scavengers. The results of the present study suggest the reconsideration of the ROP-technique for the preservation of predamaged donor grafts especially of NHBD and further studies, comparing MP and ROP upon long term preservation are strongly encouraged.  相似文献   

6.
《Cryobiology》2008,56(3):249-254
We evaluated the respective effects of warm ischemic injury in non-heart-beating donor (NHBD) grafts and/or cold ischemia time on liver viability. Eventually, the restorative potential of oxygenated hypothermic perfusion after cold storage should be investigated. Livers were retrieved from male Wistar rats and preserved with HTK-solution for 6 h or 18 h by cold storage (CS). Organ retrieval took place either prior to (ctrl.) or 30 min after cardiac arrest (NHBD). Compared to 6 h CS of ctrl. livers, enzyme leakage and functional recovery (oxygen consumption, ammonia clearance, bile production) upon warm reperfusion were massively deteriorated after 18 h CS in NHBD-livers. By contrast, 6 h CS of NHBD resulted in an only limited impairment of all parameters, which was found quite similar to the results in ctrl. after 18 h CS. Induction of cellular apoptosis (cleavage PARP) was found equally influenced by preceding warm ischemia (NHBD) or extended times of CS, but significantly triggered only by the combination of both events. After 6 h of CS, 1 h of oxygenated hypothermic machine perfusion (‘post-conditioning’) was able to bring the performance of NHBD-liver into line with the controls. Based on this work, we concluded that a limited time of warm ischemia in the donor only multiplied graft injury after long-term CS, but does not need to preclude acceptable results if reperfusion is initiated after short periods of CS. Moreover, conditioning of those grafts is effective even 1 h prior to implantation and may help to judge liver viability according to adequate parameters after hypothermic machine perfusion has been established.  相似文献   

7.
Here we evaluate the potential of anterograde gaseous oxygen persufflation for graft reconditioning after extended storage times.Pig livers were retrieved and cold-stored in HTK solution for 16 h. Some grafts were subsequently subjected to anterograde gaseous oxygen persufflation via the portal vein for 2 h. Oxygen concentrations for persufflation were either 100% or 40%. The gas was insufflated at a pressure adjusted to 18 mmHg, a pressure required to see gas bubbles leaving at the hepatic vein.Gas flow required for adequate maintenance of persufflation pressure amounted to approx. 300 ml/min in both groups. Only the use of 100% oxygen resulted in a significant increase of end-ischemic tissue ATP and improved bile flow upon reperfusion.Brief anterograde oxygen persufflation can improve energetic status of ischemic livers prior to transplantation, but the use of pure oxygen and adequate gas flow seems necessary to improve ulterior graft function.  相似文献   

8.
We evaluated the respective effects of warm ischemic injury in non-heart-beating donor (NHBD) grafts and/or cold ischemia time on liver viability. Eventually, the restorative potential of oxygenated hypothermic perfusion after cold storage should be investigated. Livers were retrieved from male Wistar rats and preserved with HTK-solution for 6 h or 18 h by cold storage (CS). Organ retrieval took place either prior to (ctrl.) or 30 min after cardiac arrest (NHBD). Compared to 6 h CS of ctrl. livers, enzyme leakage and functional recovery (oxygen consumption, ammonia clearance, bile production) upon warm reperfusion were massively deteriorated after 18 h CS in NHBD-livers. By contrast, 6 h CS of NHBD resulted in an only limited impairment of all parameters, which was found quite similar to the results in ctrl. after 18 h CS. Induction of cellular apoptosis (cleavage PARP) was found equally influenced by preceding warm ischemia (NHBD) or extended times of CS, but significantly triggered only by the combination of both events. After 6 h of CS, 1 h of oxygenated hypothermic machine perfusion (‘post-conditioning’) was able to bring the performance of NHBD-liver into line with the controls. Based on this work, we concluded that a limited time of warm ischemia in the donor only multiplied graft injury after long-term CS, but does not need to preclude acceptable results if reperfusion is initiated after short periods of CS. Moreover, conditioning of those grafts is effective even 1 h prior to implantation and may help to judge liver viability according to adequate parameters after hypothermic machine perfusion has been established.  相似文献   

9.

Background

Although non-heart-beating donors have the potential to increase the number of available organs, the livers are used very seldom because of the risk of primary non-function. There is evidence that machine perfusion is able to improve the preservation of marginal organs, and therefore we evaluated in our study the influence of the perfusate temperature during oxygenated machine perfusion on the graft quality.

Methods

Livers from male Wistar rats were harvested after 60-min warm ischemia induced by cardiac arrest. The portal vein was cannulated and the liver flushed with Lifor® (Lifeblood Medical, Inc.) organ preservation solution for oxygenated machine perfusion (MP) at 4, 12 or 21 °C. Other livers were flushed with HTK and stored at 4 °C by conventional cold storage (4 °C-CS). Furthermore two groups with either warm ischemic damage only or without any ischemic damage serve as control groups. After 6 h of either machine perfusion or cold storage all livers were normothermic reperfused with Krebs–Henseleit buffer, and functional as well as structural data were analyzed.

Results

Contrary to livers stored by static cold storage, machine perfused livers showed independently of the perfusate temperature a significantly decreased enzyme release of hepatic transaminases (ALT) during isolated reperfusion. Increasing the machine perfusion temperature to 21 °C resulted in a marked reduction of portal venous resistance and an increased bile production.

Conclusions

Oxygenated machine perfusion improves viability of livers after prolonged warm ischemic damage. Elevated perfusion temperature of 21 °C reconstitutes the hepatic functional capacity better than perfusion at 4 or 12 °C.  相似文献   

10.
Minor T  Efferz P  Lüer B 《Cryobiology》2012,65(1):41-44
BackgroundDelayed graft function still represents a major complication in clinical kidney transplantation. Here we tested the possibility to improve functional outcome of cold stored kidneys a posteriori by hypothermic reconditioning using retrograde oxygen persufflation (ROP) immediately prior to reperfusion.MethodsKidneys from female German Landrace pigs were flushed with Histidine–Tryptophan–Ketoglutarate (HTK) solution and cold-stored for 18 h (control).Some grafts were subsequently subjected to 90 min of retrograde oxygen persufflation (ROP) via the renal vein during cold preservation. Early graft function of all kidneys was assessed thereafter by warm reperfusion in vitro (n = 6, resp.).ResultsRenal function upon reperfusion was significantly enhanced by ROP with an approximately twofold increase in renal clearances of creatinine and urea. ROP also led to higher renal vascular flow rates, enhanced urine output and mitigated histological alterations.ConclusionIt is concluded that initial graft function can be improved by 90 min of hypothermic gaseous oxygenation after arrival of the preserved organ in the transplantation clinic.  相似文献   

11.

Background

Expanded criteria donors (ECDs) are currently accepted as potential sources to increase the donor pool and to provide more chances of kidney transplantation for elderly recipients who would not survive long waiting periods. Hypothermic machine perfusion (HMP) is designed to mitigate the deleterious effects of simple cold storage (CS) on the quality of preserved organs, particularly when the donor is in a marginal status.

Methods

We compared the transplant outcomes in patients receiving ECD kidneys with either HMP or CS graft preservation. Articles from the MEDLINE, EMBASE and Cochrane Library databases were searched and all studies reporting outcomes from HMP versus CS methods of kidney preservation were included in this meta-analysis. The parameters analyzed included the incidence of delayed graft function (DGF), primary non-function (PNF) and one-year graft and patient survival.

Results

A total of seven studies qualified for the review, involving 2374 and 8716 kidney grafts with HMP or CS preservation respectively, all from ECD donors. The incidence of delayed graft function (DGF) was significantly reduced with an odd ratio(OR) of 0.59 (95% CI 0.54–0.66, P<0.001) and one-year graft survival was significantly improved with an OR of 1.12 (95% CI 1.03–1.21, P = 0.005) in HMP preservation compared to CS. However, there was no difference in the incidence of PNF (OR 0.54, 95% CI 0.21–1.40, P = 0.20), and one-year patient survival (OR 0.98, 95% CI 0.94–1.02, P = 0.36) between HMP and CS preservation.

Conclusions

HMP was associated with a reduced incidence of DGF and an with increased one-year graft survival, but it was not associated with the incidence of PNF and one-year patient survival.  相似文献   

12.
The aim of the present study was to evaluate the potential benefit of machine preservation with the Belzer MPS or HTK solution, compared to standard cold storage, after procurement of marginal livers from non-heart beating donors in an experimental pilot study. Livers from male Wistar rats (250-300 g bw) were harvested after 60 min of cardiac arrest, flushed via the portal vein and cold stored submerged in HTK for 24 h at 4 degrees C while other organs were subjected to oxygenated machine perfusion with HTK or Belzer's MPS at 5 ml/min at 4 degrees C. Cold perfusion of livers with the non-colloidal HTK was not compromised by the lack of oncotic agents and there was no rise in vascular resistance during the 24 h of machine preservation with HTK or the colloidal Belzer MPS. Viability of the livers was assessed after the cold preservation period by warm reperfusion in vitro. Oxygenated machine perfusion was found to significantly increase viability of the livers vs simple cold storage with respect to portal vascular resistance upon reperfusion, enzyme release as well as functional recovery of oxygen utilization or bile production. Moreover, tissue antigen expression of ICAM-1 or histocompatibility antigen class II could be markedly reduced by oxygenated perfusion preservation as compared to cold storage. It is concluded that predamaged organs should preferably be preserved by oxygenated machine perfusion thus minimizing functional alterations and immunogenicity of the graft. In this setup HTK appeared equally effective as Belzer's MPS for machine preservation.  相似文献   

13.
Extracellular cold-inducible RNA-binding protein (CIRP) is a proinflammatory mediator that aggravates ischaemia-reperfusion injury (IRI). Normothermic machine perfusion (NMP) could effectively alleviate the IRI of the liver, but the underlying mechanism remains to be explored. We show that human DCD livers secreted a large amount of CIRP during static cold storage (CS), which is released into the circulation after reperfusion. The expression of CIRP was related to postoperative IL-6 levels and liver function. In a rat model, the CIRP expression was upregulated during warm ischaemia and cold storage. Then, rat DCD livers were preserved using CS, hypothermic oxygenated machine perfusion (HOPE) and NMP. C23, a CIRP inhibitor, was administrated in the HOPE group. Compared with CS, NMP significantly inhibited CIRP expression and decreased oxidative stress by downregulating NADPH oxidase and upregulating UCP2. NMP markedly inhibited the mitochondrial fission-related proteins Drp-1 and Fis-1. Further, NMP increased the mitochondrial biogenesis-related protein, TFAM. NMP significantly reduced inflammatory reactions and apoptosis after reperfusion, and NMP-preserved liver tissue had higher bile secretion and ICG metabolism compared to the CS group. Moreover, C23 administration attenuated IRI in the HOPE group. Additionally, HL-7702 cells were stimulated with rhCIRP and C23. High rhCIRP levels increased oxidative stress and apoptosis. In summary, NMP attenuates the IRI of DCD liver by inhibiting CIRP-mediated oxidative stress and mitochondrial fission.  相似文献   

14.

Introduction

Hypothermic machine perfusion offers great promise in kidney transplantation and experimental studies are needed to establish the optimal conditions for this to occur. Pig kidneys are considered to be a good model for this purpose and share many properties with human organs. However it is not established whether the metabolism of pig kidneys in such hypothermic hypoxic conditions is comparable to human organs.

Methods

Standard criteria human (n = 12) and porcine (n = 10) kidneys underwent HMP using the LifePort Kidney Transporter 1.0 (Organ Recovery Systems) using KPS-1 solution. Perfusate was sampled at 45 minutes and 4 hours of perfusion and metabolomic analysis performed using 1-D 1H-NMR spectroscopy.

Results

There was no inter-species difference in the number of metabolites identified. Of the 30 metabolites analysed, 16 (53.3%) were present in comparable concentrations in the pig and human kidney perfusates. The rate of change of concentration for 3-Hydroxybutyrate was greater for human kidneys (p<0.001). For the other 29 metabolites (96.7%), there was no difference in the rate of change of concentration between pig and human samples.

Conclusions

Whilst there are some differences between pig and human kidneys during HMP they appear to be metabolically similar and the pig seems to be a valid model for human studies.  相似文献   

15.
So PW  Fuller BJ 《Cryobiology》2001,43(3):238-247
The metabolic consequences of supplying oxygen by two different modes were investigated. The effects of hypothermic liver preservation after cold hypoxic flush (Group I), oxygenated vascular persufflation (Group II), and continuous oxygenated perfusion (Group III) were compared. Adenine nucleotides were measured to assess energetics, and 1H nuclear magnetic resonance spectroscopy was employed to investigate other metabolic pathways. Energetics were maintained by both modes of oxygenation at 24 h. The mitochondrial redox state is indicated by the ratio of acetoacetate (Ace) and beta-hydroxybutyrate (betaHb). The detection of only betaHb or Ace in the hypoxic flush and perfused livers, respectively, suggested that the mitochondria of these livers were hyperreduced and hyperoxidized, respectively. In contrast, both components of the redox couple were detected in the persufflated livers, suggesting that persufflation may be a simple and effective method of maintaining hepatic energetics long-term while maintaining a more normal mitochondrial redox state.  相似文献   

16.
Graft steatosis is a risk factor for poor initial function after liver transplantation. Biliary complications are frequent even after normal liver transplantation. A subnormothermic machine perfusion (MP20) preservation procedure was developed by our group with high potential for reducing injury to hepatocytes and sinusoidal cells of lean and fatty livers respect to conventional cold storage (CS). We report the response of the biliary tree to CS or MP20, in lean and obese Zucker rat liver. Dipeptidylpeptidase-IV (DPP-IV), crucial for the inactivation of incretins and neuropeptides, was used as a marker. Liver morphology and canalicular network of lean livers were similar after CS/reperfusion or MP20/reperfusion. CS preservation of fatty livers induced serious damage to the parenchyma and to the canalicular activity/ expression of DPP-IV, whereas with MP20 the morphology and canalicular network were similar to those of untreated lean liver. CS and MP20 had similar effects on DPP-IV activity and expression in the upper segments of the intrahepatic biliary tree of fatty livers. DPP-IV expression was significantly increased after MP20 respect to CS or to the controls, both for lean and obese animals. Our data support the superiority of MP20 over CS for preserving fatty livers. Dipeptidylpeptidase-IV activity and expression reveal decreased damage to the intrahepatic biliary tree in fatty livers submitted to subnormothermic machine-perfusion respect to conventional cold storage.Key words: Dipeptidylpeptidase-IV, fatty liver, bile tract, cold storage, subnormothermic machine perfusion  相似文献   

17.

Background

In response to the increased organ shortage, organs derived from donation after cardiac death (DCD) donors are becoming an acceptable option once again for clinical use in transplantation. However, transplant outcomes in cases where DCD organs are used are not as favorable as those from donation after brain death or living donors. Different methods of organ preservation are a key factor that may influence the outcomes of DCD kidney transplantation.

Methods

We compared the transplant outcomes in patients receiving DCD kidneys preserved by machine perfusion (MP) or by static cold storage (CS) preservation by conducting a meta-analysis. The MEDLINE, EMBASE and Cochrane Library databases were searched. All studies reporting outcomes for MP versus CS preserved DCD kidneys were further considered for inclusion in this meta-analysis. Odds ratios and 95% confidence intervals (CI) were calculated to compare the pooled data between groups that were transplanted with kidneys that were preserved by MP or CS.

Results

Four prospective, randomized, controlled trials, involving 175 MP and 176 CS preserved DCD kidney transplant recipients, were included. MP preserved DCD kidney transplant recipients had a decreased incidence of delayed graft function (DGF) with an odd ration of 0.56 (95% CI = 0.36–0.86, P = 0.008) compared to CS. However, no significant differences were seen between the two technologies in incidence of primary non-function, one year graft survival, or one year patient survival.

Conclusions

MP preservation of DCD kidneys is superior to CS in terms of reducing DGF rate post-transplant. However, primary non-function, one year graft survival, and one year patient survival were not affected by the use of MP or CS for preservation.  相似文献   

18.
Ischemia-reperfusion injury (IRI) is a hallmark for tissue injury in donation after circulatory death (DCD) kidneys. The implementation of hypothermic machine perfusion (HMP) provides a platform for improved preservation of DCD kidneys. Doxycycline administration has shown protective effects during IRI. Therefore, we explored the impact of doxycycline on proteolytic degradation mechanisms and the urinary proteome of perfused kidney grafts. Porcine kidneys underwent 30 min of warm ischemia, 24 h of oxygenated HMP (control/doxycycline) and 240 min of ex vivo reperfusion. A proteomic analysis revealed distinctive clustering profiles between urine samples collected at T15 min and T240 min. High-efficiency undecanal-based N-termini (HUNTER) kidney tissue degradomics revealed significantly more proteolytic activity in the control group at T-10. At T240, significantly more proteolytic activity was observed in the doxycycline group, indicating that doxycycline alters protein degradation during HMP. In conclusion, doxycycline administration during HMP led to significant proteomic and proteolytic differences and protective effects by attenuating urinary NGAL levels. Ultimately, we unraveled metabolic, and complement and coagulation pathways that undergo alterations during machine perfusion and that could be targeted to attenuate IRI induced injury.  相似文献   

19.
BackgroundThere are currently two approaches to hypothermic preservation for most solid organs: static or dynamic. Cold storage is the main method used for static storage (SS), while hypothermic pulsatile perfusion (HPP) and other machine perfusion-based methods, such as normothermic machine perfusion and oxygen persufflation, are the methods used for dynamic preservation. HPP is currently approved for kidney transplantation.MethodsWe evaluated, for the first time, the feasibility of HPP on 11 human pancreases contraindicated for clinical transplantation because of advanced age and/or history of severe alcoholism and/or abnormal laboratory tests. Two pancreases were used as SS controls, pancreas splitting was performed on 2 other pancreases for SS and HPP and 7 pancreases were tested for HPP. HPP preservation lasted 24 h at 25 mmHg. Resistance index was continuously monitored and pancreas and duodenum histology was evaluated every 6 h.ResultsThe main finding was the complete absence of edema of the pancreas and duodenum at all time-points during HPP. Insulin, glucagon and somatostatin staining was normal. Resistance index decreased during the first 12 h and remained stable thereafter.Conclusion24 h hypothermic pulsatile perfusion of marginal human pancreas-duodenum organs was feasible with no deleterious parenchymal effect. These observations encourage us to further develop this technique and evaluate the safety of HPP after clinical transplantation.  相似文献   

20.
We have shown that cold perfusion of hearts generates reactive oxygen and nitrogen species (ROS/RNS). In this study, we determined 1) whether ROS scavenging only during cold perfusion before global ischemia improves mitochondrial and myocardial function, and 2) which ROS leads to compromised cardiac function during ischemia and reperfusion (I/R) injury. Using fluorescence spectrophotometry, we monitored redox balance (NADH and FAD), O2 levels and mitochondrial Ca2+ (m[Ca2+]) at the left ventricular wall in 120 guinea pig isolated hearts divided into control (Con), MnTBAP (a superoxide dismutase 2 mimetic), MnTBAP (M) + catalase (C) + glutathione (G) (MCG), C+G (CG), and NG-nitro-L-arginine methyl ester (L-NAME; a nitric oxide synthase inhibitor) groups. After an initial period of warm perfusion, hearts were treated with drugs before and after at 27°C. Drugs were washed out before 2 h at 27°C ischemia and 2 h at 37°C reperfusion. We found that on reperfusion the MnTBAP group had the worst functional recovery and largest infarction with the highest m[Ca2+], most oxidized redox state and increased ROS levels. The MCG group had the best recovery, the smallest infarction, the lowest ROS level, the lowest m[Ca2+], and the most reduced redox state. CG and L-NAME groups gave results intermediate to those of the MnTBAP and MCG groups. Our results indicate that the scavenging of cold-induced O2 species to less toxic downstream products additionally protects during and after cold I/R by preserving mitochondrial function. Because MnTBAP treatment showed the worst functional return along with poor preservation of mitochondrial bioenergetics, accumulation of H2O2 and/or hydroxyl radicals during cold perfusion may be involved in compromised function during subsequent cold I/R injury. hypothermic ischemia; mitochondrial Ca2+; reactive oxygen species  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号