首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
IL-23, a heterodimeric cytokine composed of the p40 subunit of IL-12 and a novel p19 subunit, has been shown to be a key player in models of autoimmune chronic inflammation. To investigate the role of IL-23 in host resistance during chronic fungal infection, wild-type, IL-12- (IL-12p35-/-), IL-23- (IL-23p19-/-), and IL-12/IL-23- (p40-deficient) deficient mice on a C57BL/6 background were infected with Cryptococcus neoformans. Following infection, p40-deficient mice demonstrated higher mortality than IL-12p35-/- mice. Reconstitution of p40-deficient mice with rIL-23 prolonged their survival to levels similar to IL-12p35-/- mice. IL-23p19-/- mice showed a moderately reduced survival time and delayed fungal clearance in the liver. Although IFN-gamma production was similar in wild-type and IL-23p19-/- mice, production of IL-17 was strongly impaired in the latter. IL-23p19-/- mice produced fewer hepatic granulomata relative to organ burden and showed defective recruitment of mononuclear cells to the brain. Moreover, activation of microglia cells and expression of IL-1beta, IL-6, and MCP-1 in the brain was impaired. These results show that IL-23 complements the more dominant role of IL-12 in protection against a chronic fungal infection by an enhanced inflammatory cell response and distinct cytokine regulation.  相似文献   

2.
The heterodimeric cytokine IL-23 consists of a private cytokine-like p19 subunit and a cytokine receptor-like subunit, p40, which is shared with IL-12. Previously reported IL-12p40-deficient mice have profound immune defects resulting from combined deficiency in both IL-12 and IL-23. To address the effects of specific IL-23 deficiency, we generated mice lacking p19 by gene targeting. These mice display no overt abnormalities but mount severely compromised T-dependent humoral immune responses. IL-23p19(-/-) mice produce strongly reduced levels of Ag-specific Igs of all isotypes, but mount normal T-independent B cell responses. In addition, delayed type hypersensitivity responses are strongly impaired in the absence of IL-23, indicating a defect at the level of memory T cells. T cells stimulated with IL-23-deficient APCs secrete significantly reduced amounts of the proinflammatory cytokine IL-17, and IL-23-deficient mice phenotypically resemble IL-17-deficient animals. Thus, IL-23 plays a critical role in T cell-dependent immune responses, and our data provide further support for the existence of an IL-23/IL-17 axis of communication between the adaptive and innate parts of the immune system.  相似文献   

3.
IL-12p70 induced IFN-gamma is required to control Mycobacterium tuberculosis growth; however, in the absence of IL-12p70, an IL-12p40-dependent pathway mediates induction of IFN-gamma and initial bacteriostatic activity. IL-23 is an IL-12p40-dependent cytokine containing an IL-12p40 subunit covalently bound to a p19 subunit that is implicated in the induction of CD4 T cells associated with autoimmunity and inflammation. We show that in IL-23 p19-deficient mice, mycobacterial growth is controlled, and there is no diminution in either the number of IFN-gamma-producing Ag-specific CD4 T cells or local IFN-gamma mRNA expression. Conversely, there is an almost total loss of both IL-17-producing Ag-specific CD4 T cells and local production of IL-17 mRNA in these mice. The absence of IL-17 does not alter expression of the antimycobacterial genes, NO synthase 2 and LRG-47, and the absence of IL-23 or IL-17, both of which are implicated in mediating inflammation, fails to substantially affect the granulomatous response to M. tuberculosis infection of the lung. Despite this redundancy, IL-23 is required to provide a moderate level of protection in the absence of IL-12p70, and this protection correlates with a requirement for IL-23 in the IL-12p70-independent induction of Ag-specific, IFN-gamma-producing CD4 T cells. We also show that IL-23 is required for the induction of an IL-17-producing Ag-specific phenotype in naive CD4 T cells in vitro and that absence of IL-12p70 promotes an increase in the number of IL-17-producing Ag-specific CD4 T cells both in vitro and in vivo.  相似文献   

4.
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.  相似文献   

5.
Disorders in enteric bacteria recognition by intestinal macrophages (Mphi) are strongly correlated with the pathogenesis of chronic colitis; however the precise mechanisms remain unclear. The aim of the current study was to elucidate the roles of Mphi in intestinal inflammation by using an IL-10-deficient (IL-10-/-) mouse colitis model. GM-CSF-induced bone marrow-derived Mphi (GM-Mphi) and M-CSF-induced bone marrow-derived Mphi (M-Mphi) were generated from bone marrow CD11b+ cells. M-Mphi from IL-10-/- mice produced abnormally large amounts of IL-12 and IL-23 upon stimulation with heat-killed whole bacteria Ags, whereas M-Mphi from wild-type (WT) mice produced large amounts of IL-10 but not IL-12 or IL-23. In contrast, IL-12 production by GM-Mphi was not significantly different between WT and IL-10-/- mice. In ex vivo experiments, cytokine production ability of colonic lamina propria Mphi (CLPMphi) but not splenic Mphi from WT mice was similar to that of M-Mphi, and CLPMphi but not splenic Mphi from IL-10-/- mice also showed abnormal IL-12p70 hyperproduction upon stimulation with bacteria. Surprisingly, the abnormal IL-12p70 hyperproduction from M-Mphi from IL-10-/- mice was improved by IL-10 supplementation during the differentiation process. These results suggest that CLPMphi and M-Mphi act as anti-inflammatory Mphi and suppress excess inflammation induced by bacteria in WT mice. In IL-10-/- mice, however, such Mphi subsets differentiated into an abnormal phenotype under an IL-10-deficient environment, and bacteria recognition by abnormally differentiated subsets of intestinal Mphi may lead to Th1-dominant colitis via IL-12 and IL-23 hyperproduction. Our data provide new insights into the intestinal Mphi to gut flora relationship in the development of colitis in IL-10-/- mice.  相似文献   

6.
IL-23 and IL-12 are heterodimeric cytokines which share the p40 subunit, but which have unique second subunits, IL-23p19 and IL-12p35. Since p40 is required for the development of the Th1 type response necessary for resistance to Toxoplasma gondii, studies were performed to assess the role of IL-23 in resistance to this pathogen. Increased levels of IL-23 were detected in mice infected with T. gondii and in vitro stimulation of dendritic cells with this pathogen resulted in increased levels of mRNA for this cytokine. To address the role of IL-23 in resistance to T. gondii, mice lacking the p40 subunit (common to IL-12 and IL-23) and mice that lack IL-12 p35 (specific for IL-12) were infected and their responses were compared. These studies revealed that p40(-/-) mice rapidly succumbed to toxoplasmosis, while p35(-/-) mice displayed enhanced resistance though they eventually succumbed to this infection. In addition, the administration of IL-23 to p40(-/-) mice infected with T. gondii resulted in a decreased parasite burden and enhanced resistance. However, the enhanced resistance of p35(-/-) mice or p40(-/-) mice treated with IL-23 was not associated with increased production of IFN-gamma. When IL-23p19(-/-) mice were infected with T. gondii these mice developed normal T cell responses and controlled parasite replication to the same extent as wild-type mice. Together, these studies indicate that IL-12, not IL-23, plays a dominant role in resistance to toxoplasmosis but, in the absence of IL-12, IL-23 can provide a limited mechanism of resistance to this infection.  相似文献   

7.
IL-12 is thought to be involved in the susceptibility to experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. IL-12 signals through a heterodimeric receptor (IL-12Rbeta1/IL-12Rbeta2), whose beta2-chain is up-regulated on activated, autoreactive Th1 cells. Contrary to the expectation that the absence of IL-12Rbeta2 would protect from EAE, we found that IL-12Rbeta2-deficient mice developed earlier and more severe disease, with extensive demyelination and CNS inflammation. The inflammatory cells were mainly comprised of CD4(+) T cells, monocyte/macrophages, and dendritic cells. Compared to wild-type mice, IL-12Rbeta2-deficient mice exhibited significantly increased autoantigen-induced proliferative response and increased production of TNF-alpha, GM-CSF, IL-17, IL-18/IL-18Ralpha, and NO. In addition, we found significantly increased levels of IL-23p19 mRNA expression in spleen cells from immunized IL-12Rbeta2(-/-) mice compared with wild-type mice. These findings indicate that IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS, and that, in the absence of IL-12Rbeta2, increased IL-23 and other inflammatory molecules may be responsible for increased severity of EAE.  相似文献   

8.
Periodontal disease is a chronic inflammatory disease in the oral cavity, which culminates in alveolar bone loss. Porphyromonas gingivalis is a consensus periodontal pathogen that has been implicated in adult forms of periodontitis. We previously demonstrated that IL-10-deficient mice exhibit a hyperinflammatory phenotype and are highly susceptible to P. gingivalis-induced periodontitis, indicating an important anti-inflammatory effect of IL-10 in suppressing bone loss. In this study, we analyzed the pathway(s) by which IL-10 deficiency leads to severe P. gingivalis-induced periodontitis. Because Stat3 is essential in IL-10 signaling, immune cell-specific Stat3-deficient mice were subjected to P. gingivalis infection to identify the key IL-10-responsive cells in preventing periodontitis. Myeloid cell-specific Stat3-deficient mice exhibited increased periodontal bone loss (p < 0.001), whereas T cell- and B cell-specific Stat3 mice were resistant, suggesting that macrophages (MP) and/or polymorphonuclear leukocytes are the key target cells normally suppressed by IL-10. Myeloid cell-specific Stat3-deficient mice exhibited elevated gingival CD40L gene expression in vivo compared with wild-type controls (p < 0.01), and Stat3-deficient MPs exhibited vigorous P. gingivalis-stimulated IL-12 production in vitro and induced elevated Ag-specific T cell proliferation compared with wild-type MPs (p < 0.01). Of importance, both IL-12p40/IL-10 and T cell/IL-10 double-deficient mice were resistant to P. gingivalis-induced periodontitis, demonstrating roles for both IL-12p40 and T cells in pathogenesis in a hyperinflammatory model of disease. These data demonstrate that P. gingivalis-induced periodontitis in IL-10-deficient mice is dependent upon IL-12p40-mediated proinflammatory T cell responses.  相似文献   

9.
IL-12 and IL-23 are heterodimeric cytokines involved in the induction of Th1 and Th17 immune responses. Previous work indicated that a region on chromosome 11 encoding the IL-12p40 subunit regulates strain differences in susceptibility to murine trinitrobenzene sulfonic acid-induced colitis. In addition, this region determines strain differences in LPS-induced IL-12 responses. In this study, we investigated how polymorphisms in the coding region of murine Il12b influence IL-12 and IL-23 heterodimer formation. Transfection studies using constructs containing IL-12p35 linked to IL-12p40 from the colitis-resistant C57BL/6 strain or to the polymorphic p40 variant from the colitis-susceptible SJL/J strain demonstrated that SJL/J-derived p40 constructs synthesized significantly more IL-12p70 than did constructs harboring the C57BL/6-p40 variant. This could not be attributed to differences in synthesis rate or secretion, implicating a greater affinity of SJL/J-derived IL-12p40 for its IL-12p35 subunit. This greater affinity is also associated with increased IL-23 synthesis. In addition, C57BL/6 mice transgenic for the SJL/J 40 variant synthesized significantly more IL-12p70 upon LPS challenge and were more prone to develop colonic inflammation than did C57BL/6 mice transgenic for the C57BL/6-p40 variant. The more efficient binding of the polymorphic Il12b variant to p35 and p19 is most likely due to conformational changes following differential glycosylation as a consequence of the polymorphism. The high synthesis rate of the mature cytokines resulting from this efficient binding can lead to rapid proinflammatory skewing of immune responses and distortion of the homeostatic balance underlying the greater susceptibility for colitis.  相似文献   

10.
11.
Interleukin (IL)-12 and IL-23 both share the p40 subunit and are key cytokines in the pathogenesis of Crohn's disease. Previously, we have developed and identified three mouse p40 peptide-based and virus-like particle vaccines. Here, we evaluated the effects and immune mechanisms of the optimal vaccine in downregulating intestinal inflammation in murine acute and chronic colitis, induced by intrarectal administrations of trinitrobenzene sulfonic acid (TNBS). Mice were injected subcutaneously with vaccine, vaccine carrier or saline three times, and then intrarectally administered TNBS weekly for 2 wks (acute colitis) or 7 wks (chronic colitis). The severity of colitis was evaluated by body weight, histology and collagen and cytokine levels in colon tissue. Th1 and Th17 cells in mesenteric lymph nodes (MLN) were determined. Our results showed the vaccine induced high level and long-lasting specific IgG antibodies to p40, IL-12 and IL-23. After administrations of TNBS, vaccinated mice had significantly less body weight loss and a significant decrease of inflammatory scores, collagen deposition and expression of p40, IL-12, IL-23, IL-17, TNF, iNOS and Bcl-2 in colon tissues, compared with carrier and saline groups. Moreover, vaccinated mice exhibited a trend to lower percentages of Th1 cells in acute colitis and of Th17 cells in chronic colitis in MLN than in controls. In summary, administration of the vaccine induced specific antibodies to IL-12 and IL-23, which was associated with improvement of intestinal inflammation and fibrosis. This suggests that the vaccine may provide a potential approach for the long-term treatment of Crohn's disease.  相似文献   

12.
To investigate roles of IL-23 in viral infection, we have engineered recombinant vaccinia virus (VV) expressing IL-12 (VV-IL-12) and expressing IL-23 (VV-IL-23). We found VV-IL-23 was less virulent in BALB/c mice than wild-type VV (VV-WT), indicating that IL-23 enhances resistance to VV. VV-specific CTL activity in VV-IL-23-infected mice was slightly higher than activity in VV-WT-inoculated mice, although antiviral Ab production and NK activity were not increased. IL-12/23p40-deficient mice survived the infection with VV-IL-23, indicating that IL-23 promotes VV resistance independently of IL-12. The mechanism of the IL-23-mediated resistance was distinct from that of the IL-12-regulated resistance because IFN-gamma-deficient mice did not eliminate VV-IL-12, but did eradicate VV-IL-23. These data indicate that IFN-gamma is essential for the IL-12-mediated resistance, but dispensable for the IL-23-regulated resistance. Because IL-17 is a key in the IL-23-regulated resistance to bacteria, we hypothesized an involvement of IL-17 in the resistance to VV. Treatment with an anti-IL-17 mAb resulted in a significant increase of viral titers in VV-IL-23-infected IFN-gamma-deficient mice. In addition, VV-IL-17 was less virulent than VV-WT in BALB/c mice, and IL-17-deficient mice were more sensitive to VV-WT than control mice. However, the effect of neutralization with an anti-IL-17 mAb was limited, and IL-17-deficient mice survived the infection with VV-IL-23. Taken together, these data suggest that the IL-23/IL-17 axis plays a certain but subdominant role in the IL-23-mediated resistance to VV. Unveiling of an alternative pathway in the IL-23-regulated resistance might provide a novel strategy against infectious pathogens without side effects of autoimmunity.  相似文献   

13.
Human anaplasmosis is an emerging infectious disease transmitted by ticks that can be potentially fatal in the immunocompromised and the elderly. The mechanisms of defense against the causative agent, Anaplasma phagocytophilum, are not completely understood; however, interferon (IFN)-gamma plays an important role in pathogen clearance. Here, we show that IFN-gamma is regulated through an early IL-12/23p40-dependent mechanism. Interleukin (IL)-12/23p40 is regulated in macrophages and dendritic cells after activation by microbial agonists and cytokines and constitutes a subunit of IL-12 and IL-23. IL-12/23p40-deficient mice displayed an increased A. phagocytophilum burden, accelerated thrombocytopenia and increased neutrophil numbers in the spleen at day 6 postinfection. Infection of MyD88- and mitogen-activated kinase kinase 3 (MKK3)-deficient mice suggested that the early susceptibility due to IL-12/23p40 deficiency was not dependent on signaling through MyD88 or MKK3. The lack of IL-12/23p40 reduced IFN-gamma production in both CD4(+) and CD8(+) T cells although the effect was more pronounced in CD4(+) T cells. Our data suggest that the immune response against A. phagocytophilum is a multifactorial and cooperative process. The IL-12/23p40 subunit drives the CD4(+) Th1 immune response in the early phase of infection and IL-12/23p40-independent mechanisms ultimately contribute to pathogen elimination from the host.  相似文献   

14.
To study a potential IL-12p40-dependent but IL-12p75-independent agonistic activity regulating the immune response against Salmonella Enteritidis, the course of infection in IL-12p35-deficient mice (IL-12p35(-/-), capable of producing IL-12p40) was compared with that of IL-12p40(-/-) mice. Mice lacking IL-12p40 revealed a higher mortality rate and higher bacterial organ burden than mice capable of producing IL-12p40. This phenotype was found in both genetically susceptible (BALB/c, Ity(s)) and resistant mice (129Sv/Ev, Ity(r)) indicating Ity-independent mechanisms. The more effective control of bacteria in the IL-12p35(-/-) mice was associated with elevated serum IFN-gamma and TNF-alpha levels. In contrast, IL-12p40(-/-) mice showed reduced IFN-gamma production, which was associated with significantly elevated serum IgE levels. Early during infection (days 3 and 4 postinfection), as well as late (day 20 postinfection), the number of infected phagocytes was strongly increased in the absence of IL-12p40 indicating impaired bactericidal activity when IL-12p40 was missing. Liver histopathology revealed a decreased number of mononuclear granulomas in IL-12p40(-/-) mice. Depletion of CD4(+) or CD8(+) T lymphocytes in vivo suggested that both T cell subpopulations contribute to the IL-12p40-dependent protective functions. Analysis of IL-12p40 vs IL-23p19 mRNA expression revealed an up-regulation of only IL-12p40 mRNA during Salmonella infection. Together these data indicate that IL-12p40 can induce protective mechanisms during both the innate and the adaptive type 1 immune response in Salmonella infection. This novel activity of IL-12p40 complements the well described dominant and essential role of IL-12p75 in protective immunity to Salmonella infection.  相似文献   

15.
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.  相似文献   

16.
Genetic and biochemical analyses show that IL-23p19 plays a central role in mediating bacteria-induced colitis in interleukin-10-deficient (IL-10(-/-)) mice. The molecular mechanisms responsible for the dysregulated innate host response leading to enhanced IL-23 gene expression in IL-10(-/-) mice are poorly understood. In this study, we investigated the role of Bcl3 in controlling LPS-induced IL-23p19 gene expression in bone marrow-derived dendritic cells (BMDC) isolated from IL-10(-/-) mice. We report higher IL-23p19 mRNA accumulation and protein secretion in LPS-stimulated BMDC isolated from IL-10(-/-) compared with WT mice. Lipopolysaccharide (LPS)-induced B cell leukemia 3 (Bcl3) expression was strongly impaired (90% decrease) in IL-10(-/-) BMDC compared with WT BMDC. Chromatin immunoprecipitation demonstrated enhanced RelA binding to the IL-23p19 promoter in IL-10(-/-) compared with WT BMDC. Bcl3 overexpression decreased LPS-induced IL-23p19 gene expression in IL-10(-/-) BMDC, which correlated with enhanced NF-kappaB p50 binding and decreased RelA binding to the gene promoter. Conversely, Bcl3 knockdown enhanced LPS-induced IL-23p19 gene expression in WT BMDC. Moreover, LPS-induced IL-23p19 gene expression was significantly enhanced in Bcl3(-/-) BMDC compared with WT BMDC. In conclusion, enhanced LPS-induced IL-23p19 gene expression in IL-10(-/-) mice is due to impaired Bcl3 expression leading to diminished p50 and enhanced RelA recruitment to the IL-23p19 promoter.  相似文献   

17.
Astrocytes as antigen-presenting cells: expression of IL-12/IL-23   总被引:1,自引:0,他引:1  
Interleukin-12 (IL-12, p70) a heterodimeric cytokine of p40 and p35 subunits, important for Th1-type immune responses, has been attributed a prominent role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the related heterodimeric cytokine, IL-23, composed of the same p40 subunit as IL-12 and a unique p19 subunit, was shown to be involved in Th1 responses and EAE. We investigated whether astrocytes and microglia, CNS cells with antigen-presenting cell (APC) function can present antigen to myelin basic protein (MBP)-reactive T cells, and whether this presentation is blocked with antibodies against IL-12/IL-23p40. Interferon (IFN)-gamma-treated APC induced proliferation of MBP-reactive T cells. Anti-IL-12/IL-23p40 antibodies blocked this proliferation. These results support and extend our previous observation that astrocytes and microglia produce IL-12/IL-23p40. Moreover, we show that stimulated astrocytes and microglia produce biologically active IL-12p70. Because IL-12 and IL-23 share p40, we wanted to determine whether astrocytes also express IL-12p35 and IL-23p19, as microglia were already shown to express them. Astrocytes expressed IL-12p35 mRNA constitutively, and IL-23 p19 after stimulation. Thus, astrocytes, under inflammatory conditions, express all subunits of IL-12/IL-23. Their ability to present antigen to encephalitogenic T cells can be blocked by neutralizing anti-IL-12/IL-23p40 antibodies.  相似文献   

18.
Inflammatory bowel disease is a chronic inflammatory response of the gastrointestinal tract mediated in part by an aberrant response to intestinal microflora. Expression of IL-23 subunits p40 and p19 within cells of the innate immune system plays a central role in the development of lower bowel inflammation in response inflammatory challenge. The NF-kappaB subunit c-Rel can regulate expression of IL-12/23 subunits suggesting that it could have a critical role in mediating the development of chronic inflammation within the lower bowel. In this study, we have analyzed the role of c-Rel within the innate immune system in the development of lower bowel inflammation, in two well-studied models of murine colitis. We have found that the absence of c-Rel significantly impaired the ability of Helicobacter hepaticus to induce colitis upon infection of RAG-2-deficient mice, and ameliorated the ability of CD4(+)CD45RB(high) T cells to induce disease upon adoptive transfer into RAG-deficient mice. The absence of c-Rel interfered with the expression of IL-12/23 subunits both in cultured primary macrophages and within the colon. Thus, c-Rel plays a critical role in regulating the innate inflammatory response to microflora within the lower bowel, likely through its ability to modulate expression of IL-12/23 family members.  相似文献   

19.
20.
Studies in recent years have identified a pivotal role of the cytokine IL-23 in the pathogenesis of inflammatory bowel diseases (IBD: Crohn´s disease, ulcerative colitis) and colitis-associated colon cancer. Genetic studies revealed that subgroups of IBD patients have single nucleotide polymorphisms in the IL-23R gene suggesting that IL-23R signaling affects disease susceptibility. Furthermore, increased production of IL-23 by macrophages, dendritic cells or granulocytes has been observed in various mouse models of colitis, colitis-associated cancer and IBD patients. Moreover, in several murine models of colitis, suppression of IL-12/IL-23 p40, IL-23 p19 or IL-23R function led to marked suppression of gut inflammation. This finding was associated with reduced activation of IL-23 target cells such as T helper 17 cells, innate lymphoid cells type 3, granulocytes and natural killer cells as well as with impaired production of proinflammatory cytokines. Based on these findings, targeting of IL-23 emerges as important concept for suppression of gut inflammation and inflammation-associated cancer growth. Consistently, neutralizing antibodies against IL-12/IL-23 p40 and IL-23 p19 have been successfully used in clinical trials for therapy of Crohn´s disease and pilot studies in ulcerative colitis are ongoing. These findings underline the crucial regulatory role of IL-23 in chronic intestinal inflammation and colitis-associated cancer and indicate that therapeutic strategies aiming at IL-23 blockade may be of key relevance for future therapy of IBD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号