共查询到20条相似文献,搜索用时 15 毫秒
1.
Related sites in human and herpesvirus DNA recognized by methylated DNA-binding protein from human placenta. 总被引:2,自引:5,他引:2
下载免费PDF全文

Methylated DNA-binding protein (MDBP) from mammalian cells binds specifically to six pBR322 and M13mp8 DNA sequences but only when they are methylated at their CpG dinucleotide pairs. We cloned three high-affinity MDBP recognition sites from the human genome on the basis of their binding to MDBP. These showed much homology to the previously characterized prokaryotic sites. However, the human sites exhibited methylation-independent binding apparently because of the replacement of m5C residues with T residues. We also identified three other MDBP sites in the herpes simplex virus type 1 genome, two of which require in vitro CpG methylation for binding and are in the upstream regions of viral genes. A comparison of MDBP sites leads to the following partially symmetrical consensus sequence for MDBP recognition sites: 5'-R T m5Y R Y Y A m5Y R G m5Y R A Y-3'; m5Y (m5C or T), R (A or G), Y (C or T). This consensus sequence displays an unusually high degree of degeneracy. Also, interesting deviations from this consensus sequence, including a one base-pair deletion in the middle, are sometimes observed in high-affinity MDBP sites. 相似文献
2.
Specific binding of cruciform DNA structures by a protein from human extracts. 总被引:4,自引:2,他引:4
下载免费PDF全文

A gel electrophoresis binding assay has been used to probe extracts from cultured human lymphoblasts for proteins that bind cruciform structures in duplex DNA. Proteins have been detected that form complexes with synthetic X- and Y-junctions. Several lines of evidence suggest that binding is specific for DNA structure rather than sequence: (1) X- and Y-structures were bound whereas linear duplexes containing identical DNA sequences were not, (2) Binding occurred with equal efficiency to two X-junctions that were constructed from DNA strands of different sequence, (3) One X-junction successfully competed with another for binding whereas linear duplex DNA did not; and (4) protein-DNA complexes were observed at probe:non-specific competitor DNA ratios of 1:10,000. 相似文献
3.
4.
Determination of the DNA sequence recognized by the bHLH-zip domain of the N-Myc protein. 总被引:10,自引:0,他引:10
下载免费PDF全文

The DNA-binding domain of the murine N-Myc protein, comprising the basic helix-loop-helix-zipper (bHLH-zip) region was expressed as a fusion protein in E. coli. The affinity purified glutathione-S-transferase-N-Myc fusion protein (GST-N-MYC) was used to select the N-Myc specific DNA-recognition motif from a pool of random-sequence oligonucleotides. After seven rounds of binding-site selection, specifically enriched oligonucleotides were cloned and sequenced. Of 31 individual oligonucleotides whose sequences were determined, 30 contained a common DNA-motif, defining the hexameric consensus sequence CACGTG. We confirm by mutational analysis that binding of the N-Myc derived bHLH-zip domain to this motif is sequence-specific. 相似文献
5.
6.
Kaoru Sugasawa 《DNA Repair》2009,8(8):969-972
UV-damaged DNA-binding protein (UV-DDB) is characterized by its very high affinity and specificity for UV-damaged DNA. Although precise roles for UV-DDB have been quite enigmatic since its discovery, accumulating evidence indicates that it promotes recognition of and protein assembly on UV photolesions in the global genome nucleotide excision repair pathway. The recently solved crystal structure of UV-DDB bound to DNA containing a (6-4) photoproduct has revealed that the DDB2/XPE subunit is responsible for the interaction, which induces flipping out of the two affected bases into a binding pocket, indicating that UV-DDB has evolved especially to recognize dinucleotide lesions, like UV photolesions. Taken together with the previously solved structure of the DDB1-CUL4A E3 ligase, this study has also novel insights into how this factor coordinates ubiquitination of various protein substrates around the site of DNA damage. 相似文献
7.
Several DNA-binding drugs are being developed to create tailored molecules which can discriminate among the different sequences of the whole genome. By discriminating among specific sites in DNA, these molecules may provide optimal drug therapy. The complete sequencing of the human genome offers a wealth of DNA targets to be analyzed as potential drug-binding sites. To increase our understanding of DNA-drug interactions and their selectivity, we have studied the relative and absolute occurrence of CG-rich sequences, of various lengths, in human gene promoters. In several promoters, including those of oncogenes, cell cycle regulation factors, tumor suppressors and housekeeping genes, the presence of potential binding sites containing CpG steps (in which many drugs are known to intercalate) is variable, but in many cases these sites are not randomly distributed. Sequences 6-7 base pairs in length, like CGCCCG or CGCCCCG, occur only once in some promoters, thus they may be potentially specific therapeutic targets. 相似文献
8.
9.
The lymphocyte proliferative responses to respiratory syncytial virus (RSV) were evaluated for 10 healthy adult donors and compared with proliferative responses to a chimeric glycoprotein (FG glycoprotein) which consists of the extracellular domains of both the F and G proteins of RSV and which is produced from a recombinant baculovirus. The lymphocytes of all 10 donors responded to RSV, and the proliferative responses to the whole virus were highly correlated with the responses to the FG glycoprotein. These data suggested that one or both of these glycoproteins of RSV were major target structures for stimulation of the human lymphocyte proliferative response among virus-specific memory T cells. The lymphocytes of four donors were evaluated further for their proliferative responses to a nested set of overlapping peptides modeled on the extracellular and cytoplasmic domains of the F protein of RSV. Strikingly, the lymphocytes of all 4 donors responded primarily to a region defined by a single peptide spanning residues 338 to 355, and the lymphocytes of 2 donors responded to an overlapping peptide spanning residues 328 to 342 also, thus defining a region of the F1 subunit within residues 328 to 355 that may circumscribe an immunodominant site for stimulation of human T cells from a variety of individuals. This region of the F protein is highly conserved among A and B subgroup viruses. As revealed by monoclonal antibody blocking studies, the lymphocytes responding to this antigenic site had characteristics consistent with T helper cells. Similar epitope mapping studies were performed with BALB/c mice immunized with the FG protein in which a relatively hydrophobic peptide spanning residues 51 to 65 within the F2 subunit appeared to be the major T cell recognition determinant. The data are discussed with respect to an antigenic map of the F protein and the potential construction of a synthetic vaccine for RSV. 相似文献
10.
Bent DNA structures associated with several origins of replication are recognized by a unique enzyme from trypanosomatids. 总被引:1,自引:2,他引:1
下载免费PDF全文

Sequence-directed bending of the DNA double helix is a conformational variation found in both prokaryotic and eukaryotic organisms. The utilization of bent DNA structures from various sources as specific signals recognized by an enzyme is demonstrated here using a unique endonuclease purified from trypanosomatid cells. Crithidia fasciculata nicking enzyme was previously shown to recognize specifically the bent structure found in kinetoplast DNA minicircles. The binding constant measured for this specific interaction is of two orders of magnitude higher than that measured for the binding of the enzyme to a non-curved sequence. As determined by binding competition and mobility shift electrophoresis analyses, this enzyme recognizes the sequence-directed bends associated with the origins of replication of bacteriophage lambda and simian virus 40 (SV40), as well as that located within the autonomously replicating sequence (ARS1) region of the yeast S. cerevisiae. 相似文献
11.
How different DNA sequences are recognized by a DNA-binding protein: effects of partial proteolysis. 总被引:3,自引:2,他引:3
下载免费PDF全文

P C Supakar X Y Zhang S Githens R Khan K C Ehrlich M Ehrlich 《Nucleic acids research》1989,17(21):8611-8629
MDBP is a sequence-specific DNA-binding protein from mammals that recognizes a variety of DNA sequences, all of which show much homology to a partially palindromic 14 base-pair consensus sequence. MDBP subjected to limited proteolysis and then incubated with various specific oligonucleotide duplexes yielded two types of complexes. The relative concentrations of these complexes varied greatly depending on how closely the MDBP site matched the consensus sequence. No such DNA sequence-specific differences in the types of complexes formed were seen with intact MDBP. Partial proteolysis also changed the relative affinity of MDBP for several of its binding sites. The nature of the two types of complexes formed from fragmented MDBP and DNA was studied by DNA competition assays, protein titration, site-directed mutagenesis, and dimethyl sulfate and missing base interference assays. The results suggest that, for some specific DNA sequences, half-site interactions with one MDBP subunit predominate and for others, strong interaction of two subunits with both half-sites readily occur. 相似文献
12.
Y Fujiwara C Masutani T Mizukoshi J Kondo F Hanaoka S Iwai 《The Journal of biological chemistry》1999,274(28):20027-20033
The UV-damaged DNA-binding (UV-DDB) protein is the major factor that binds DNA containing damage caused by UV radiation in mammalian cells. We have investigated the DNA recognition by this protein in vitro, using synthetic oligonucleotide duplexes and the protein purified from a HeLa cell extract. When a 32P-labeled 30-mer duplex containing the (6-4) photoproduct at a single site was used as a probe, only a single complex was detected in an electrophoretic mobility shift assay. It was demonstrated by Western blotting that both of the subunits (p48 and p127) were present in this complex. Electrophoretic mobility shift assays using various duplexes showed that the UV-DDB protein formed a specific, high affinity complex with the duplex containing an abasic site analog, in addition to the (6-4) photoproduct. By circular permutation analyses, these DNA duplexes were found to be bent at angles of 54 degrees and 57 degrees in the complexes with this protein. From the previously reported NMR studies and the fluorescence resonance energy transfer experiments in the present study, it can be concluded that the UV-DDB protein binds DNA that can be bent easily at the above angle. 相似文献
13.
14.
The budding yeast Mph1 protein, the putative ortholog of human FANCM, possesses a 3' to 5' DNA helicase activity and is capable of disrupting the D-loop structure to suppress chromosome arm crossovers in mitotic homologous recombination. Similar to FANCM, genetic studies have implicated Mph1 in DNA replication fork repair. Consistent with this genetic finding, we show here that Mph1 is able to mediate replication fork reversal, and to process the Holliday junction via DNA branch migration. Moreover, Mph1 unwinds 3' and 5' DNA Flap structures that bear key features of the D-loop. These biochemical results not only provide validation for a role of Mph1 in the repair of damaged replication forks, but they also offer mechanistic insights as to its ability to efficiently disrupt the D-loop intermediate. 相似文献
15.
Formation of nascent heteroduplex structures by RecA protein and DNA 总被引:13,自引:0,他引:13
E. coli RecA protein promotes homologous pairing in two distinguishable phases: synapsis and strand exchange. With circular single strands (plus strand only) and linear duplex DNA, polarized or unidirectional strand exchange appeared to cause heteroduplex joints to form and grow from a unique end of the duplex DNA. However, a variety of other pairs of substrates appeared to form joint molecules without regard to the polarity of the strands involved. This paradox has been resolved by observations that show that synapsis is fast, nonpolar and sensitive to inhibition by ADP, whereas strand exchange is slow, directional and relatively insensitive to inhibition by ADP. Thus a heteroduplex joint initiated at one end of the duplex DNA grows by continued strand exchange, whereas a joint initiated at the other end dissociates and is unable to start again because accumulating ADP inhibits synapsis. RecA protein appears to form a nascent protein-DNA structure, the RecA synaptic structure, in which at least 100-300 bp in the duplex molecule are held in an unwound configuration and in which the incoming strand is aligned with its complement. 相似文献
16.
In this report we show that human DNA Topoisomerase I (Top1) forms DNA-protein adducts with nicked and gapped DNA structures lacking a conventional Top1 cleavage site. The radioactively labeled crosslinking products were identified by SDS-gel electrophoresis. The chemical structure of the groups at 5' or 3' end of the nick does not have an effect on the formation of these covalent adducts. Therefore, all kinds of nicks, either directly induced by ionizing radiation or reactive oxygen species or indirectly induced in the course of base excision repair (BER) are targets for Top1 that competes with BER proteins and other nick-sensors. Top1-DNA covalent adducts formed in cells exposed to DNA damaging agents can promote genetic instability. 相似文献
17.
Polyclonal rabbit antibodies against melittin recognize human C protein C9 and retard C9-mediated hemolysis. Human C9 contains a tetrameric and a pentameric sequence (amino acids 293-296 and 528-532, respectively) that together match a continuous segment in the melittin sequence, i.e., residues 8-16. It has been suggested that the tetrameric and the pentameric regions on C9 form a discontinuous epitope on folded C9 that mimics the structure of melittin. To further test this hypothesis, antibodies to C9-sequence-specific peptides were prepared. Peptides containing either the homologous tetrameric or the homologous pentameric sequence together with short stretches of the respective amino- and carboxyl-terminal flanking regions were synthesized, as well as a composite peptide predicted to resemble the discontinuous epitope as a linear, nine-amino acid sequence. Direct and competitive binding assays demonstrated that the tetrameric and the pentameric sequences are part of the epitope on human C9 that is recognized by anti-melittin IgG. However, only antibodies directed against the complete epitope are capable of inhibiting hemolysis. Because neither anti-tetramer nor anti-pentamer antibodies affect hemolysis whereas anti-melittin and anti-composite antibodies do, we propose that human C9 changes conformation around a hinge located between residues 296 and 528 and that the latter two antibodies inhibit unfolding required for membrane insertion and subsequent hemolysis. 相似文献
18.
Epitopes of the Mycobacterium tuberculosis 65-kilodalton protein antigen as recognized by human T cells 总被引:11,自引:0,他引:11
F Oftung A S Mustafa T M Shinnick R A Houghten G Kvalheim M Degre K E Lundin T Godal 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(8):2749-2754
A synthetic peptide approach has been used to identify the epitopes recognized by clonal and polyclonal human T cells reactive to the recombinant mycobacterial 65-kDa protein Ag. Three of the four epitopes identified were recognized as cross-reactive between Mycobacterium tuberculosis and Mycobacterium leprae, although their amino acid sequence in two of three cases was not identical. The peptide (231-245) defining an epitope recognized as specific to the M. tuberculosis complex contains two substitutions compared with the homologous M. leprae region of which one or both are critical to T cell recognition. The reactive T cell clones showed helper/inducer phenotype (CD4+, CD8-), and secrete IL-2, granulocyte-macrophage-CSF, and IFN-gamma upon Ag stimulation. The same clones display cytotoxicity against macrophages pulsed with the relevant peptides or mycobacteria. 相似文献
19.
P F Agris R Parks L Bowman R H Guenther S A Kovacs S Pelsue 《Experimental cell research》1990,189(2):276-279
Type I topoisomerases (EC 5.99.1.2) are those enzymes capable of relaxing negatively supercoiled DNA without the need for ATP. The central role played by these enzymes in cell function suggests that the structure of type I topoisomerases may be highly conserved in eukaryotic cells. However, the extent of the conservation among eukaryotes is unknown. Human DNA topoisomerase I is an autoimmune antigen (Scl-70) of scleroderma patients. We have found that the autoimmune antibodies in human Scl-70 sera recognize protein from various plants, and these proteins display DNA relaxation function. In addition, Scl-70 antibodies were able to inhibit enzymatic activity of plant topoisomerase I. Therefore, the immunological cross-reactivity of the plant topoisomerase with human antibodies demonstrates that, despite divergence of eukaryotic organisms, these plant and animal enzymes retain structurally similar enzymatic features. 相似文献
20.
Agonist and antagonist switch DNA motifs recognized by human androgen receptor in prostate cancer
下载免费PDF全文

Jennifer M Thomas‐Ahner Dayong Wu Xiangtao Liu Zhenqing Ye Liguo Wang Benjamin Sunkel Cassandra Grenade Junsheng Chen Debra L Zynger Pearlly S Yan Jiaoti Huang Kenneth P Nephew Tim H‐M Huang Shili Lin Steven K Clinton Wei Li Victor X Jin Qianben Wang 《The EMBO journal》2015,34(4):502-516