首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have followed 15 HIV-1 chronically infected patients during prolonged highly active antiretroviral treatment (HAART) and subsequent long term structured treatment interruption (STI). We analyzed Nef, Tat, and p24 specific cellular immunity using IFN-gamma enzyme-linked immunospot assays and T cell proliferation assays. Eight HAART patients showed IFN-gamma responses to at least one antigen, but no positive responses were seen during STI. We observed retained or increased p24 specific IFN-gamma responses in most patients during HAART with viral suppression. These results showed persisting HIV-1 specific cellular immunity during HAART; however, in prolonged STI with viral rebound this immunity declined.  相似文献   

2.
3.
Zhou J  Aiken C 《Journal of virology》2001,75(13):5851-5859
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef stimulates viral infectivity by facilitating an early event in the HIV-1 life cycle. Although no structural or biochemical defects in Nef-defective HIV-1 particles have been demonstrated, the Nef protein is incorporated into HIV-1 particles. To localize the function of Nef within the virus particle, we developed a novel technology involving fusion of enveloped donor HIV-1 particles bearing core defects with envelope-defective target virions bearing HIV-1 receptors. Although neither virus alone was capable of infecting CD4(+) target cells, the incubation of donor and target virions prior to addition to target cells resulted in infection. This effect, termed "virion transcomplementation," required a functional Env protein on the donor virus and CD4 and an appropriate coreceptor on target virions. To provide evidence for intervirion fusion as the mechanism of complementation, experiments were performed using dual-enveloped HIV-1 particles bearing both HIV-1 and ecotropic murine leukemia virus (E-MLV) Env proteins as donor virions. Infection of CD4-negative target cells bearing E-MLV receptors was prevented by HIV-1 entry inhibitors when added before, but not after, incubation of donor and target virions prior to the addition to cells. When we used Nef(+) and Nef(-) donor and target virions, Nef enhanced infection when present in donor virions. In contrast, no effect of Nef was detected when present in the target virus. These results reveal a potential mechanism for enhancing HIV-1 diversity in vivo through the rescue of defective viral genomes and provide a novel genetic system for the functional analysis of virion-associated proteins in HIV-1 infection.  相似文献   

4.
5.
6.
The Nef protein of human immunodeficiency virus type 1 (HIV-1) promotes virion infectivity through mechanisms that are yet ill defined. Some Nef is incorporated into particles, where it is cleaved by the viral protease between amino acids 57 and 58. The functional significance of this event, which liberates the C-terminal core domain of the protein from its membrane-associated N terminus, is unknown. To address this question, we examined the modalities of Nef virion association and processing. We found that although significant levels of Nef were detected in HIV-1 virions partly in a cleaved form, cell-specific variations existed in the efficiency of Nef proteolytic processing. The virion association of Nef was strongly enhanced by myristoylation but did not require other HIV-1-specific proteins, since Nef was efficiently incorporated into and cleaved inside murine leukemia virus particles. Substituting alanine for tryptophan57 decreased the efficiency of Nef processing, while mutating leucine58 had little effect. In contrast, replacing both of these residues simultaneously almost completely prevented this process. However, when the resulting mutants were compared with a wild-type control in viral infectivity assays, no correlation was found between the levels of cleavage and the ability to stimulate virion infectivity. Furthermore, simian immunodeficiency virus Nef, which lacks the sequence recognized by the protease and as a consequence is not cleaved despite its incorporation into virions, could stimulate the infectivity of a nef-defective HIV-1 variant as efficiently as HIV-1 Nef. On these bases, we conclude that the proteolytic processing of Nef is not required for the ability of this protein to enhance virion infectivity.  相似文献   

7.
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.  相似文献   

8.
The nef gene product of human immunodeficiency virus type 1 (HIV-1) promotes more-rapid kinetics of viral replication in primary peripheral blood mononuclear cells. We have previously shown that these enhancing effects of Nef on HIV-1 replication reflect an increase in viral infectivity detectable both in limiting dilution assays and through a single-cycle infection of the HeLa-CD4-long terminal repeat-beta-galactosidase indicator cell line. We now demonstrate that nef-defective HIV-1 can be rescued to near wild-type levels of infectivity by coexpressing Nef in trans in the cell line producing the virus. This observation indicates that HIV-1 virions produced in the presence of Nef are intrinsically different. However, we show that the major viral structural proteins are quantitatively similar in purified viral preparations. We also demonstrate the functional equivalence of the gp120-gp41 envelope glycoprotein complexes of Nef+ and Nef- HIV-1 through an assay for viral entry. Finally, we show that env-defective Nef+ HIV-1 pseudotyped with an amphotropic envelope is also more infectious than similarly pseudotyped Nef- HIV-1. Thus, the production of HIV-1 in the presence of Nef results in viral particles that are more infectious, and this increased infectivity is manifested at a stage after viral entry but prior to or coincident with HIV-1 gene expression.  相似文献   

9.
The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.  相似文献   

10.
11.
F12 human immunodeficiency virus type 1 (HIV-1) nef is a naturally occurring nef mutant cloned from the provirus of a nonproductive, nondefective, and interfering HIV-1 variant (F12-HIV). We have already shown that cells stably transfected with a vector expressing the F12-HIV nef allele do not downregulate CD4 receptors and, more peculiarly, become resistant to the replication of wild type (wt) HIV. In order to investigate the mechanism of action of such an HIV inhibition, the F12-HIV nef gene was expressed in the context of the NL4-3 HIV-1 infectious molecular clone by replacing the wt nef gene (NL4-3/chi). Through this experimental approach we established the following. First, NL4-3/chi and nef-defective (Deltanef) NL4-3 viral particles behave very similarly in terms of viral entry and HIV protein production during the first replicative cycle. Second, no viral particles were produced from cells infected with NL4-3/chi virions, whatever the multiplicity of infection used. The viral inhibition apparently occurs at level of viral assembling and/or release. Third, this block could not be relieved by in-trans expression of wt nef. Finally, NL4-3/chi reverts to a producer HIV strain when F12-HIV Nef is deprived of its myristoyl residue. Through a CD4 downregulation competition assay, we demonstrated that F12-HIV Nef protein potently inhibits the CD4 downregulation induced by wt Nef. Moreover, we observed a redistribution of CD4 receptors at the cell margin induced by F12-HIV Nef. These observations strongly suggest that F12-HIV Nef maintains the ability to interact with the intracytoplasmic tail of the CD4 receptor molecule. Remarkably, we distinguished the intracytoplasmic tails of Env gp41 and CD4 as, respectively, viral and cellular targets of the F12-HIV Nef-induced viral retention. For the first time, the inhibition of the viral life cycle by means of in-cis expression of a Nef mutant is here reported. Delineation of the F12-HIV Nef mechanism of action may offer additional approaches to interference with the propagation of HIV infection.  相似文献   

12.

Background  

The availability of cell lines releasing fluorescent viral particles can significantly support a variety of investigations, including the study of virus-cell interaction and the screening of antiviral compounds. Regarding HIV-1, the recovery of such biologic reagents represents a very hard challenge due to the intrinsic cytotoxicity of many HIV-1 products. We sought to overcome such a limitation by using a cell line releasing HIV-1 particles in an inducible way, and by exploiting the ability of a HIV-1 Nef mutant to be incorporated in virions at quite high levels.  相似文献   

13.
BACKGROUND: Human immunodeficiency virus-1 (HIV-1) infection decreases the cell-surface expression of its cellular receptor, CD4, through the combined actions of Nef, Env and Vpu. Such functional convergence strongly suggests that CD4 downregulation is critical for optimal viral replication, yet the significance of this phenomenon has so far remained a puzzle. RESULTS: We show that high levels of CD4 on the surface of HIV-infected cells induce a dramatic reduction in the infectivity of released virions by the sequestering of the viral envelope by CD4. CD4 is able to accumulate in viral particles while at the same time blocking incorporation of Env into the virion. Nef and Vpu, through their ability to downregulate CD4, counteract this effect. CONCLUSIONS: The CD4-mediated 'envelope interference' described here probably explains the plurality of mechanisms developed by HIV to downregulate the cell-surface expression of its receptor.  相似文献   

14.
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) replication through an unknown mechanism. We and others have previously reported that efficient HIV-1 replication in activated primary CD4(+) T cells depends on the ability of Nef to downregulate CD4 from the cell surface. Here we demonstrate that Nef greatly enhances the infectivity of HIV-1 particles produced in primary T cells. Nef-defective HIV-1 particles contained significantly reduced quantities of gp120 on their surface; however, Nef did not affect the levels of virion-associated gp41, indicating that Nef indirectly stabilizes the association of gp120 with gp41. Surprisingly, Nef was not required for efficient replication of viruses that use CCR5 for entry, nor did Nef influence the infectivity or gp120 content of these virions. Nef also inhibited the incorporation of CD4 into HIV-1 particles released from primary T cells. We propose that Nef, by downregulating cell surface CD4, enhances HIV-1 replication by inhibiting CD4-induced dissociation of gp120 from gp41. The preferential requirement for Nef in the replication of X4-tropic HIV-1 suggests that the ability of Nef to downregulate CD4 may be most important at later stages of disease when X4-tropic viruses emerge.  相似文献   

15.
16.
高效抗逆转录病毒治疗(HAART)可以有效地抑制人类免疫缺陷病毒Ⅰ型(HIV-1)的复制及血浆病毒载量,延缓发病进程,改善、提高患者的生活质量和存活时间。但是,一旦停止治疗就会导致血浆病毒血症迅速反弹,HIV-1以原病毒的形式在静息记忆CD4+T等细胞中的持续存在是清除HIV-1的一个障碍。HIV-1基因转录的激活与阻抑决定了受感染细胞进入产毒性感染或潜伏感染。本文从原病毒整合位置与转录干扰、细胞转录因子与HIV-1启动子相互作用招募RNA聚合酶起始转录、转录的表观遗传调控和反式激活因子Tat及其相关蛋白促进转录延伸等方面探讨了HIV-1原病毒转录调控机制。  相似文献   

17.
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.  相似文献   

18.
The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.  相似文献   

19.
We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号