首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Maturation is the last step of heart growth that prepares the organ over the lifetime of the mammal for powerful, effective, and sustained pumping. Structural, gene expression, physiological, and functional specialties of cardiomyocytes describe this mechanism as the heart transits from fetus to adult phases. The main cornerstones of maturation of cardiomyocytes are reviewed and primary regulatory mechanisms are summarized to facilitate and organize these cellular activities. During embryonic development, cardiomyocytes proliferate rigorously but leave the cell cycle permanently immediately after the parturition of the child and experience terminal differentiation. The activation of a host of genes specific for the mature heart is correlated with the exit from the cell cycle. Even when exposed to mitogenic stimuli, the bulk of mature cardiomyocytes do not re-join the cell cycle. The reason for this permanent exit from the cell cycle is shown to be linked with stable switching off of the genes of the cell cycle directly involved in the G2/M transition phase and cytokinesis development. Researchers also trying to explain the molecular mechanism involved in stable inhibition of the gene and described structural changes (epigenetic and chromatin) in this mechanism. Substantial developments in the future with advances in the scientific platforms used for cardiomyocyte maturation research will broaden our understanding of this mechanism and result in better maturation of cardiomyocyte-derived pluripotent stem cells and effective treatment approaches for cardiovascular diseases.  相似文献   

2.
    
Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.  相似文献   

3.
类器官是将具有多向分化潜能的干细胞或组织细胞在特定环境下培养分化成为能够模拟原生器官结构和功能的三维结构.类器官在各种疾病模型研究及药物筛选中发挥至关重要的作用.近年来,通过体外诱导胰腺组织或多能干细胞分化形成具有胰岛细胞功能的胰岛类器官研究成为热点,为胰岛相关疾病模型、药物研究以及糖尿病的治疗提供了新的手段.本文针对...  相似文献   

4.
    
Induced pluripotent stem cells (iPSCs) serve as a robust platform to model several human arrhythmia syndromes including atrial fibrillation (AF). However, the structural, molecular, functional, and electrophysiological parameters of patient-specific iPSC-derived atrial cardiomyocytes (iPSC-aCMs) do not fully recapitulate the mature phenotype of their human adult counterparts. The use of physiologically inspired microenvironmental cues, such as postnatal factors, metabolic conditioning, extracellular matrix (ECM) modulation, electrical and mechanical stimulation, co-culture with non-parenchymal cells, and 3D culture techniques can help mimic natural atrial development and induce a more mature adult phenotype in iPSC-aCMs. Such advances will not only elucidate the underlying pathophysiological mechanisms of AF, but also identify and assess novel mechanism-based therapies towards supporting a more ‘personalized’ (i.e. patient-specific) approach to pharmacologic therapy of AF.  相似文献   

5.
Activin/Nodal and Wnt signaling are known to play important roles in the regional specification of endoderm. Here we have investigated the effect of the length of stimulation with Activin A plus Wnt3a on the development of hepatic and pancreatic progenitors from the definitive endoderm (DE) cells derived from human pluripotent stem cells (hPSC). We show that DE-cells derived from hPSC with 3 days high Activin A and Wnt3a treatment were able to differentiate further into both tested endodermal lineages. When prolonging the DE-induction protocol from 3 to 5 or 7 days, almost pure DE-marker positive cell populations were obtained. However, these cells had an impaired pancreatic differentiation capacity, while they still developed into hepatocyte-like cells. Further propagation of the DE-cells in the presence of Wnt3a and Activin A led to the complete loss of differentiation capacity into hepatic or pancreatic lineages. When Wnt3a was removed after 24 h from the initiation of the differentiation, the cells were able to differentiate into PDX1+/NKX6.1+ pancreatic progenitors even with longer DE induction time while efficiency of hepatic differentiation was lower. Our results suggest that both the length and the timing of Wnt3a treatment during DE induction are crucial for the final differentiation outcome. Although it is possible to derive apparently pure DE cells with prolonged Activin A/Wnt-stimulation, their progenitor capacity is restricted to a limited time window.  相似文献   

6.
7.
    
We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation, and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and, with quantitative cell division tracking and fate monitoring, identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion, during directed differentiation, to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system.  相似文献   

8.
    
It has been known for over 20 years that foetal calf serum can induce hypertrophy in cultured cardiomyocytes but this is rarely considered when examining cardiomyocytes derived from pluripotent stem cells (PSC). Here, we determined how serum affected cardiomyocytes from human embryonic‐ (hESC) and induced pluripotent stem cells (hiPSC) and hiPSC from patients with hypertrophic cardiomyopathy linked to a mutation in the MYBPC3 gene. We first confirmed previously published hypertrophic effects of serum on cultured neonatal rat cardiomyocytes demonstrated as increased cell surface area and beating frequency. We then found that serum increased the cell surface area of hESC‐ and hiPSC‐derived cardiomyocytes and their spontaneous contraction rate. Phenylephrine, which normally induces cardiac hypertrophy, had no additional effects under serum conditions. Likewise, hiPSC‐derived cardiomyocytes from three MYBPC3 patients which had a greater surface area than controls in the absence of serum as predicted by their genotype, did not show this difference in the presence of serum. Serum can thus alter the phenotype of human PSC derived cardiomyocytes under otherwise defined conditions such that the effects of hypertrophic drugs and gene mutations are underestimated. It is therefore pertinent to examine cardiac phenotypes in culture media without or in low concentrations of serum.  相似文献   

9.
    
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm‐like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.  相似文献   

10.
心脏毒性是药物研发失败的主要原因之一,也是临床前安全评价研究的难题之一。人胚胎干细胞和诱导型人多能干细胞均具有无限增殖、自我更新和多向分化的特性,为体外心脏毒性筛选实验提供了细胞资源。人胚胎干细胞和诱导型人多能干细胞诱导分化的心肌细胞相似,具有相同的形态结构,且随着培养时间的推移,功能性心、Na^+、Ca^2+通道密度逐渐增加、心肌特异性基因ANF、α—MHC、MLC-2α的表达量增加,具有相似的动作电位时程和收缩性等特点,相当于幼稚型心肌细胞。将它们应用于已知作用药物的心脏毒性筛选,检测心肌细胞离子通道、动作电位、心脏损伤标志物、收缩功能的变化,获得与临床相似的结果。因此,建立人胚胎干细胞和诱导型人多能干细胞诱导分化心肌细胞的体外评价模型,大大减少了药物研发的时间和成本,克服了种属间的差异,推动了心脏毒性体外评价方法的发展。  相似文献   

11.
梁贺  王嘉  曹楠  黄吉均  杨黄恬 《生命科学》2009,21(5):663-668
胚胎干细胞(embryonic stem cells,ESCs)具有自我更新、无限增殖和多向分化的特性,包括分化成心脏组织的多种类型细胞。经体细胞重编程产生的诱导多能干细胞(induced pluripotent stem cells,iPS)也被证明有类似胚胎干细胞的特性。但这些多能干细胞向心肌细胞自发分化的效率非常低,因此,如何有效地诱导这些多能干细胞向心肌细胞的定向分化对深入认识心肌发生发育的关键调控机制和实现其在药物发现和再生医学,如心肌梗塞、心力衰竭的细胞治疗以及心肌组织工程中的应用均具有非常重要的意义。该文重点综述了近年来胚胎干细胞及诱导多能干细胞向心肌细胞分化和调控的研究进展,并探讨了这一研究领域亟待解决的关键问题和这些多能干细胞的应用前景。  相似文献   

12.
    
《Cell Stem Cell》2019,24(6):983-994.e7
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   

13.
Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro ‘patient-specific cell-based system'' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after β-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca2+/calmodulin-dependent serine–threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies.  相似文献   

14.
    
Stem cell research is the product of cumulative, integrated effort between and within laboratories and disciplines. The many collaborative steps that lead to that special “Eureka moment”, when something that has been a puzzle perhaps for years suddenly become clear, is among the greatest pleasures of a scientific career. In this essay, the serendipitous pathway from first acquaintance with pluripotent stem cells to advanced cardiovascular models that emerged from studying development and disease will be described. Perhaps inspiration for later generations of stem cell researchers simply to follow whatever they find interesting.  相似文献   

15.
Causative mutations and variants associated with cardiac diseases have been found in genes encoding cardiac ion channels, accessory proteins, cytoskeletal components, junctional proteins, and signaling molecules. In most cases the functional evaluation of the genetic alterationhas been carried out by expressing the mutated proteins in in-vitro heterologous systems. While these studies have provided a wealth of functional details that have greatly enhanced the understanding of the pathological mechanisms, it has always been clear that heterologous expression of the mutant protein bears the intrinsic limitation of the lack of a proper intracellular environment and the lack of pathological remodeling. The results obtained from the application of the next generation sequencing technique to patients suffering from cardiac diseases have identified several loci, mostly in non-coding DNA regions, which still await functional analysis. The isolation and culture of human embryonic stem cells has initially provided a constant source of cells from which cardiomyocytes(CMs) can be obtained by differentiation. Furthermore, the possibility to reprogram cellular fate to a pluripotent state, has opened this process to the study of genetic diseases. Thus induced pluripotent stem cells(i PSCs) represent a completely new cellular model that overcomes the limitations of heterologous studies. Importantly, due to the possibility to keep spontaneously beating CMs in culture for several months, during which they show a certain degree of maturation/aging, this approach will also provide a system in which to address the effect of long-term expression of the mutated proteins or any other DNA mutation, in terms of electrophysiological remodeling. Moreover, since i PSC preserve the entire patients’ genetic context, the system will help the physicians in identifying the most appropriate pharmacological intervention to correct the functional alteration. This article summarizes the current knowledge of cardiac genetic diseases modelled with i PSC.  相似文献   

16.
    
Induced pluripotent stem cells (iPSCs) hold great potential to generate novel, curative cell therapy products. However, current methods to generate these novel therapies lack scalability, are labor-intensive, require a large footprint, and are not suited to meet clinical and commercial demands. Therefore, it is necessary to develop scalable manufacturing processes to accommodate the generation of high-quality iPSC derivatives under controlled conditions. The current scale-up methods used in cell therapy processes are based on empirical, geometry-dependent methods that do not accurately represent the hydrodynamics of 3D bioreactors. These methods require multiple iterations of scale-up studies, resulting in increased development cost and time. Here we show a novel approach using computational fluid dynamics modeling to effectively scale-up cell therapy manufacturing processes in 3D bioreactors. Using a GMP-compatible iPSC line, we translated and scaled-up a small-scale cardiomyocyte differentiation process to a 3-L computer-controlled bioreactor in an efficient manner, showing comparability in both systems.  相似文献   

17.
    
Induced pluripotent stem cells(iPSCs) were first generated by Yamanaka and colleagues over a decade ago. Since then, iPSCs have been successfully differentiated into many distinct cell types, enabling tissue-, disease-, and patientspecific in vitro modelling. Cardiovascular disease is the greatest cause of mortality worldwide but encompasses rarer disorders of conduction and myocardial function for which a cellular model of study is ideal. Although methods to differentiate iPSCs into beating cardiomyocytes(iPSC-CMs) have recently been adequately optimized and commercialized, the resulting cells remain largely immature with regards to their structure and function,demonstrating fetal gene expression, disorganized morphology, reliance on predominantly glycolytic metabolism and contractile characteristics that differ from those of adult cardiomyocytes. As such, disease modelling using iPSC-CMs may be inaccurate and of limited utility. However, this limitation is widely recognized, and numerous groups have made substantial progress in addressing this problem. This review highlights successful methods that have been developed for the maturation of human iPSC-CMs using small molecules,environmental manipulation and 3-dimensional(3 D) growth approaches.  相似文献   

18.
    
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are immature in their structure and function, limiting their potential in disease modeling, drug screening, and cardiac cellular therapies. Prior studies have demonstrated that coculture of hPSC‐derived CMs with other cardiac cell types, including endothelial cells (ECs), can accelerate CM maturation. To address whether the CM differentiation stage at which ECs are introduced affects CM maturation, the authors coculture hPSC‐derived ECs with hPSC‐derived cardiac progenitor cells (CPCs) and CMs and analyze the molecular and functional attributes of maturation. ECs have a more significant effect on acceleration of maturation when cocultured with CPCs than with CMs. EC coculture with CPCs increases CM size, expression of sarcomere, and ion channel genes and proteins, the presence of intracellular membranous extensions, and chronotropic response compared to monoculture. Maturation is accelerated with an increasing EC:CPC ratio. This study demonstrates that EC incorporation at the CPC stage of CM differentiation expedites CM maturation, leading to cells that may be better suited for in vitro and in vivo applications of hPSC‐derived CMs.  相似文献   

19.
  总被引:1,自引:0,他引:1  
Santiago Ramón y Cajal discovered a new type of cell related to the myenteric plexus and also to the smooth muscle cells of the circular muscle layer of the intestine. Based on their morphology, relationships and staining characteristics, he considered these cells as primitive neurons. One century later, despite major improvements in cell biology, the interstitial cells of Cajal (ICCs) are still controversial for many researchers. The aim of study was to perform an immunohistochemical and ultrastructural characterization of the ICCs in the rabbit duodenum. We have found interstitial cells that are positive for c-Kit, CD34 and nestin and are also positive for Ki67 protein, tightly associated with somatic cell proliferation. By means of electron microscopy, we describe ICCs around enteric ganglia. They present triangular or spindle forms and a very voluminous nucleus with scarce perinuclear chromatin surrounded by a thin perinuclear cytoplasm that expands with long cytoplasmic processes. ICC processes penetrate among the smooth muscle cells and couple with the processes of other ICCs located in the connective tissue of the circular muscle layer and establish a three-dimensional network. Intercellular contacts by means of gap-like junctions are frequent. ICCs also establish gap-like junctions with smooth muscle cells. We also observe a population of interstitial cells of stellate morphology in the connective tissue that sur-rounds the muscle bundles in the circular muscle layer, usually close to nervous trunks. These cells establish different types of contacts with the muscle cells around them. In addition, the presence of a single cilium showing a structure 9 + 0 in an ICC is demonstrated for the first time. In conclusion, we report positive staining c-Kit, CD34, nestin and Ki 67. ICCs fulfilled the usual transmission electron microscopy (TEM) criteria. A new ultrastructural characteristic of at least some ICCs is demonstrated: the presence of a single cilium. Some populations of ICCs in the rabbit duodenum present certain immunohistochemical and ultrastructural characteristics that often are present in progenitor cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号