首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.  相似文献   

2.
We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models.  相似文献   

3.

Background

We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.

Methods

We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≤250 μm) and mid-sized (250–500 μm).

Results

We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.

Conclusion

We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 μm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.  相似文献   

4.
Subtle alterations in cerebral blood flow can impact the health and function of brain cells and are linked to cognitive decline and dementia. To understand hemodynamics in the three-dimensional vascular network of the cerebral cortex, we applied two-photon excited fluorescence microscopy to measure the motion of red blood cells (RBCs) in individual microvessels throughout the vascular hierarchy in anesthetized mice. To resolve heartbeat- and respiration-dependent flow dynamics, we simultaneously recorded the electrocardiogram and respiratory waveform. We found that centerline RBC speed decreased with decreasing vessel diameter in arterioles, slowed further through the capillary bed, and then increased with increasing vessel diameter in venules. RBC flow was pulsatile in nearly all cortical vessels, including capillaries and venules. Heartbeat-induced speed modulation decreased through the vascular network, while the delay between heartbeat and the time of maximum speed increased. Capillary tube hematocrit was 0.21 and did not vary with centerline RBC speed or topological position. Spatial RBC flow profiles in surface vessels were blunted compared with a parabola and could be measured at vascular junctions. Finally, we observed a transient decrease in RBC speed in surface vessels before inspiration. In conclusion, we developed an approach to study detailed characteristics of RBC flow in the three-dimensional cortical vasculature, including quantification of fluctuations in centerline RBC speed due to cardiac and respiratory rhythms and flow profile measurements. These methods and the quantitative data on basal cerebral hemodynamics open the door to studies of the normal and diseased-state cerebral microcirculation.  相似文献   

5.
6.

The maternal vasculature undergoes tremendous growth and remodeling (G&R) that enables a?>?15-fold increase in blood flow through the uterine vasculature from conception to term. Hemodynamic metrics (e.g., uterine artery pulsatility index, UA-PI) are useful for the prognosis of pregnancy complications; however, improved characterization of the maternal hemodynamics is necessary to improve prognosis. The goal of this paper is to develop a mathematical framework to characterize maternal vascular G&R and hemodynamics in uncomplicated human pregnancies. A validated 1D model of the human vascular tree from the literature was adapted and inlet blood flow waveforms at the ascending aorta at 4 week increments from 0 to 40 weeks of gestation were prescribed. Peripheral resistances of each terminal vessel were adjusted to achieve target flow rates and mean arterial pressure at each gestational age. Vessel growth was governed by wall shear stress (and axial lengthening in uterine vessels), and changes in vessel distensibility were related to vessel growth. Uterine artery velocity waveforms generated from this model closely resembled ultrasound results from the literature. The literature UA-PI values changed significantly across gestation, increasing in the first month of gestation, then dramatically decreasing from 4 to 20 weeks. Our results captured well the time-course of vessel geometry, material properties, and UA-PI. This 1D fluid-G&R model captured the salient hemodynamic features across a broad range of clinical reports and across gestation for uncomplicated human pregnancy. While results capture available data well, this study highlights significant gaps in available data required to better understand vascular remodeling in pregnancy.

  相似文献   

7.
Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, “medium-throughput” pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.  相似文献   

8.
Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.  相似文献   

9.
The present work deals with the parameter identification problem in outflow models used in one-dimensional simulations of arterial blood flow. Specifically, the resistive elements that define the models used to account for the blood supply to the vascular territories in arterial networks are computed by solving a system of non-linear equations using a Broyden method. This strategy is employed to compute the terminal parameters in the vascular territories of an anatomically detailed model of the arm comprising 67 arterial segments and 16 vascular territories. A comparison with a simple analytical approach, in terms of vascular territory resistances, average blood flows and time-dependent hemodynamic quantities, is performed. Also, a sensitivity analysis is presented to assess the performance of this new approach in normal and abnormal cardiovascular scenarios. This identification procedure allows to correctly set up hemodynamics simulations in highly detailed arterial networks making possible to gain insight in the aspects related to the blood circulation in arterial vessels.  相似文献   

10.
Although hemodynamics changes occur in heart failure (HF) and generally influence vascular function, it is not clear whether various HF models will affect the conduit vessels differentially or whether local hemodynamic forces or systemic factors are more important determinants of vascular response in HF. Here, we studied the hemodynamic changes in tachycardia or volume-overload HF swine model (created by either high rate pacing or distal abdominal aortic-vena cava fistula, respectively) on carotid, femoral, and renal arteries function and molecular expression. The ejection fraction was reduced by 50% or 30% in tachycardia or volume-overload model in four weeks, respectively. The LV end diastolic volume was increased from 65±22 to 115±78 ml in tachycardia and 67±19 to 148±68 ml in volume-overload model. Flow reversal was observed in diastolic phase in carotid artery of both models and femoral artery in volume-overload model. The endothelial function was also significantly impaired in carotid and renal arteries of tachycardia and volume-overload animals. The endothelial dysfunction was observed in femoral artery of volume-overload animals but not tachycardia animals. The adrenergic receptor-dependent contractility decreased in carotid and femoral arteries of tachycardia animals. The protein expressions of NADPH oxidase subunits increased in the three arteries and both animal models while expression of MnSOD decreased in carotid artery of tachycardia and volume-overload model. In conclusion, different HF models lead to variable arterial hemodynamic changes but similar vascular and molecular expression changes that reflect the role of both local hemodynamics as well as systemic changes in HF.  相似文献   

11.
Hemodynamic forces play critical roles in vascular pathologies such as atherosclerosis, aneurysms, and stenosis. However, detailed relationships between the specific in vivo hemodynamic microenvironment and vascular responses leading to the triggering or exacerbation of pathological remodeling of the vessel remain elusive. We have developed a hemodynamics-biology co-mapping technique that enables in situ correlation between the in vivo blood flow field and vascular changes secondary to hemodynamic insult. The hemodynamics profile is obtained from computational fluid dynamics simulation within the vascular geometry reconstructed from three-dimensional in vivo images, whereas the vascular response is obtained from histology or immunohistochemistry on harvested vascular tissue. The hemodynamics field is virtually sectioned in the histological slicing planes and digitally co-mapped with the histological images, thereby enabling correlation of the specific local vascular responses with the inciting hemodynamic stresses. We demonstrate application of this technique to rabbit basilar terminus subjected to elevated flow. Morphological changes at the basilar terminus 5 days after the flow increase were co-mapped with the initial wall shear stress and wall shear stress gradient distributions, from which localization of destructive remodeling in a specific hemodynamic zone was noticed. This method paves the way for further investigations to determine the connection between in vivo mechanical stimuli and biological responses, such as initiation of aneurysmal remodeling.  相似文献   

12.

Background

Hypertension is a highly prevalent disorder and a major risk factor for cardiovascular diseases. Hypertensive vascular remodeling is the pathological mal-adaption of blood vessels to the hypertensive condition that contributes to further development of high blood pressure and end-organ damage. Hypertensive remodeling involves, at least in part, changes in protein turnover. The ubiquitin proteasome system (UPS) is a major protein quality and quantity control system. This study tested the hypothesis that the proteasome inhibitor, bortezomib, would attenuate AngII-induced hypertension and its sequelae such as aortic remodeling in rats.

Methodology/Principal Findings

Male Sprague Dawley rats were subjected to AngII infusion for two weeks in the absence or presence of bortezomib. Mean arterial pressure was measured in conscious rats. Aortic tissue was collected for estimation of wall area, collagen deposition and expression of tissue inhibitors of matrix metalloproteases (TIMP), Ki67 (a marker of proliferation), reactive oxygen species (ROS) and VCAM-1 (a marker of inflammation). AngII infusion increased arterial pressure significantly (160±4 mmHg vs. vehicle treatment 133±2 mmHg). This hypertensive response was attenuated by bortezomib (138±5 mmHg). AngII hypertension was associated with significant increases in aortic wall to lumen ratio (∼29%), collagen deposition (∼14%) and expression of TIMP1 and TIMP2. AngII also increased MMP2 activity, proteasomal chymotrypsin-like activity, Ki67 staining, ROS generation and VCAM-1 immunoreactivity. Co-treatment of AngII-infused rats with bortezomib attenuated these AngII-induced responses.

Conclusions

Collectively, these data support the idea that proteasome activity contributes to AngII-induced hypertension and hypertensive aortic vascular remodeling at least in part by modulating TIMP1/2 and MMP2 function. Preliminary observations are consistent with a role for ROS, inflammatory and proliferative mechanisms in this effect. Further understanding of the mechanisms by which the proteasome is involved in hypertension and vascular structural remodeling may reveal novel targets for pharmacological treatment of hypertension, hypertensive remodeling or both.  相似文献   

13.
Atherosclerotic renal artery stenosis (ARAS) raises blood pressure and can reduce kidney function. Revascularization of the stenotic renal artery alone does not restore renal medullary structure and function. This study tested the hypothesis that addition of mesenchymal stem cells (MSC) to percutaneous transluminal renal angioplasty (PTRA) can restore stenotic-kidney medullary tubular transport function and attenuate its remodeling. Twenty-seven swine were divided into three ARAS (high-cholesterol diet and renal artery stenosis) and a normal control group. Six weeks after ARAS induction, two groups were treated with PTRA alone or PTRA supplemented with adipose-tissue-derived MSC (10×106 cells intra-renal). Multi-detector computed tomography and blood-oxygenation-level-dependent (BOLD) MRI studies were performed 4 weeks later to assess kidney hemodynamics and function, and tissue collected a few days later for histology and micro-CT imaging. PTRA effectively decreased blood pressure, yet medullary vascular density remained low. Addition of MSC improved medullary vascularization in ARAS+PTRA+MSC and increased angiogenic signaling, including protein expression of vascular endothelial growth-factor, its receptor (FLK-1), and hypoxia-inducible factor-1α. ARAS+PTRA+MSC also showed attenuated inflammation, although oxidative-stress remained elevated. BOLD-MRI indicated that MSC normalized oxygen-dependent tubular response to furosemide (-4.3±0.9, −0.1±0.4, −1.6±0.9 and −3.6±1.0 s−1 in Normal, ARAS, ARAS+PTRA and ARAS+PTRA+MSC, respectively, p<0.05), which correlated with a decrease in medullary tubular injury score (R2 = 0.33, p = 0.02). Therefore, adjunctive MSC delivery in addition to PTRA reduces inflammation, fibrogenesis and vascular remodeling, and restores oxygen-dependent tubular function in the stenotic-kidney medulla, although additional interventions might be required to reduce oxidative-stress. This study supports development of cell-based strategies for renal protection in ARAS.  相似文献   

14.
Relative to normal tissues, tumor microcirculation exhibits high structural and functional heterogeneity leading to hypoxic regions and impairing treatment efficacy. Here, computational simulations of blood vessel structural adaptation are used to explore the hypothesis that abnormal adaptive responses to local hemodynamic and metabolic stimuli contribute to aberrant morphological and hemodynamic characteristics of tumor microcirculation. Topology, vascular diameter, length, and red blood cell velocity of normal mesenteric and tumor vascular networks were recorded by intravital microscopy. Computational models were used to estimate hemodynamics and oxygen distribution and to simulate vascular diameter adaptation in response to hemodynamic, metabolic and conducted stimuli. The assumed sensitivity to hemodynamic and conducted signals, the vascular growth tendency, and the random variability of vascular responses were altered to simulate ‘normal’ and ‘tumor’ adaptation modes. The heterogeneous properties of vascular networks were characterized by diameter mismatch at vascular branch points (d3var) and deficit of oxygen delivery relative to demand (O2def). In the tumor, d3var and O2def were higher (0.404 and 0.182) than in normal networks (0.278 and 0.099). Simulated remodeling of the tumor network with ‘normal’ parameters gave low values (0.288 and 0.099). Conversely, normal networks attained tumor-like characteristics (0.41 and 0.179) upon adaptation with ‘tumor’ parameters, including low conducted sensitivity, increased growth tendency, and elevated random biological variability. It is concluded that the deviant properties of tumor microcirculation may result largely from defective structural adaptation, including strongly reduced responses to conducted stimuli.  相似文献   

15.
Airway remodeling is a major pathological feature of asthma. Up to now, its quantification still requires invasive methods. In this study, we aimed at determining whether in vivo micro-computed tomography (micro-CT) is able to demonstrate allergen-induced airway remodeling in a flexible mouse model of asthma. Sixty Balb/c mice were challenged intranasally with ovalbumin or saline at 3 different endpoints (Days 35, 75, and 110). All mice underwent plethysmography at baseline and just prior to respiratory-gated micro-CT. Mice were then sacrificed to assess bronchoalveolar lavage and lung histology. From micro-CT images (voxel size = 46×46×46 µm), the numerical values of total lung attenuation, peribronchial attenuation (PBA), and PBA normalized by total lung attenuation were extracted. Each parameter was compared between OVA and control mice and correlation coefficients were calculated between micro-CT and histological data. As compared to control animals, ovalbumin-sensitized mice exhibited inflammation alone (Day 35), remodeling alone (Day 110) or both inflammation and remodeling (Day 75). Normalized PBA was significantly greater in mice exhibiting bronchial remodeling either alone or in combination with inflammation. Normalized PBA correlated with various remodeling markers such as bronchial smooth muscle size or peribronchial fibrosis. These findings suggest that micro-CT may help monitor remodeling non-invasively in asthmatic mice when testing new drugs targeting airway remodeling in pre-clinical studies.  相似文献   

16.

Background

In idiopathic pulmonary arterial hypertension (IPAH), peripheral airway obstruction is frequent. This is partially attributed to the mediator dysbalance, particularly an excess of endothelin-1 (ET-1), to increased pulmonary vascular and airway tonus and to local inflammation. Bosentan (ET-1 receptor antagonist) improves pulmonary hemodynamics, exercise limitation, and disease severity in IPAH. We hypothesized that bosentan might affect airway obstruction.

Methods

In 32 IPAH-patients (19 female, WHO functional class II (n = 10), III (n = 22); (data presented as mean ± standard deviation) pulmonary vascular resistance (11 ± 5 Wood units), lung function, 6 minute walk test (6-MWT; 364 ± 363.7 (range 179.0-627.0) m), systolic pulmonary artery pressure, sPAP, 79 ± 19 mmHg), and NT-proBNP serum levels (1427 ± 2162.7 (range 59.3-10342.0) ng/L) were measured at baseline, after 3 and 12 months of oral bosentan (125 mg twice per day).

Results and Discussion

At baseline, maximal expiratory flow at 50 and 25% vital capacity were reduced to 65 ± 25 and 45 ± 24% predicted. Total lung capacity was 95.6 ± 12.5% predicted and residual volume was 109 ± 21.4% predicted. During 3 and 12 months of treatment, 6-MWT increased by 32 ± 19 and 53 ± 69 m, respectively; p < 0.01; whereas sPAP decreased by 7 ± 14 and 10 ± 19 mmHg, respectively; p < 0.05. NT-proBNP serum levels tended to be reduced by 123 ± 327 and by 529 ± 1942 ng/L; p = 0.11). There was no difference in expiratory flows or lung volumes during 3 and 12 months.

Conclusion

This study gives first evidence in IPAH, that during long-term bosentan, improvement of hemodynamics, functional parameters or serum biomarker occur independently from persisting peripheral airway obstruction.  相似文献   

17.

Introduction

Numerous anti-angiogenic agents are currently developed to limit tumor growth and metastasis. While these drugs offer hope for cancer patients, their transient effect on tumor vasculature is difficult to assess in clinical settings. Confocal laser endomicroscopy (CLE) is a novel endoscopic imaging technology that enables histological examination of the gastrointestinal mucosa. The aim of the present study was to evaluate the feasibility of using CLE to image the vascular network in fresh biopsies of human colorectal tissue. For this purpose we have imaged normal and malignant biopsy tissue samples and compared the vascular network parameters obtained with CLE with established histopathology techniques.

Materials and Methods

Fresh non-fixed biopsy samples of both normal and malignant colorectal mucosa were stained with fluorescently labeled anti-CD31 antibodies and imaged by CLE using a dedicated endomicroscopy system. Corresponding biopsy samples underwent immunohistochemical staining for CD31, assessing the microvessel density (MVD) and vascular areas for comparison with CLE data, which were measured offline using specific software.

Results

The vessels were imaged by CLE in both normal and tumor samples. The average diameter of normal vessels was 8.5±0.9 µm whereas in tumor samples it was 13.5±0.7 µm (p = 0.0049). Vascular density was 188.7±24.9 vessels/mm2 in the normal tissue vs. 242.4±16.1 vessels/mm2 in the colorectal cancer samples (p = 0.1201). In the immunohistochemistry samples, the MVD was 211.2±42.9/mm2 and 351.3±39.6/mm2 for normal and malignant mucosa, respectively. The vascular area was 2.9±0.5% of total tissue area for the normal mucosa and 8.5±2.1% for primary colorectal cancer tissue.

Conclusion

Selective imaging of blood vessels with CLE is feasible in normal and tumor colorectal tissue by using fluorescently labeled antibodies targeted against an endothelial marker. The method could be translated into the clinical setting for monitoring of anti-angiogenic therapy.  相似文献   

18.
The present study was designed to determine whether the structural composition of the scar in middle-aged post–myocardial infraction (MI) rats is affected by the biological sex of the animals. A large MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague-Dawley rats by ligation of the left coronary artery. Four weeks after the MI, rats with transmural infarctions, greater than 50% of the left ventricular (LV) free wall, were evaluated. The extent of LV remodeling and fractional volumes of fibrillar collagen (FC), myofibroblasts, vascular smooth muscle (SM) cells, and surviving cardiac myocytes (CM) in the scars were compared between the two sexes. The left ventricle of post-MI male and female rats underwent a similar degree of remodeling as evidenced by the analogous scar thinning ratio (0.46 ± 0.02 vs. 0.42 ± 0.05) and infarct expansion index (1.06 ± 0.07 vs. 1.12 ± 0.08), respectively. Most important, the contents of major structural components of the scar revealed no evident difference between M-MI and F-MI rats (interstitial FC, 80.74 ± 2.08 vs. 82.57 ± 4.53; myofibroblasts, 9.59 ± 1.68 vs.9.56 ± 1.15; vascular SM cells, 2.27 ± 0.51 vs. 3.38 ± 0.47; and surviving CM, 3.26 ± 0.39 vs. 3.05 ± 0.38, respectively). Our data are the first to demonstrate that biological sex does not influence the structural composition of a mature scar in middle-aged post-MI rats.  相似文献   

19.

Purpose

To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF) angiography at 7 Tesla and multiscale vessel enhancement filtering.

Materials and Methods

Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160×210 mm2, voxel size: 0.31×0.31×0.40 mm3) on a whole-body 7 T MR system. A volume of interest (VOI) was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ.

Results

Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3±13.9 mm2 vs. 29.0±21.0 mm2 (p<0.035)) and number of branches (3.5±1.8 vs. 1.0±0.6 (p<0.001) per cubic centimeter were significantly higher, while mean vessel branch length was significantly lower (3.8±1.5 mm vs 7.2±2.8 mm (p<0.001)) in the tumor.

Discussion

ToF angiography at 7-Tesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies.  相似文献   

20.

Purpose

Nitric oxide (NO) is constitutively produced and released from the endothelium and several blood cell types by the isoform 3 of the NO synthase (NOS3). We have shown that NO protects against myocardial ischemia/reperfusion (I/R) injury and that depletion of circulating NOS3 increases within 24h of ischemia/reperfusion the size of myocardial infarction (MI) in chimeric mice devoid of circulating NOS3. In the current study we hypothesized that circulating NOS3 also affects remodeling of the left ventricle following reperfused MI.

Methods

To analyze the role of circulating NOS3 we transplanted bone marrow of NOS3−/− and wild type (WT) mice into WT mice, producing chimerae expressing NOS3 only in vascular endothelium (BC−/EC+) or in both, blood cells and vascular endothelium (BC+/EC+). Both groups underwent 60 min of coronary occlusion in a closed-chest model of reperfused MI. During the 3 weeks post MI, structural and functional LV remodeling was serially assessed (24h, 4d, 1w, 2w and 3w) by echocardiography. At 72 hours post MI, gene expression of several extracellular matrix (ECM) modifying molecules was determined by quantitative RT-PCR analysis. At 3 weeks post MI, hemodynamics were obtained by pressure catheter, scar size and collagen content were quantified post mortem by Gomori’s One-step trichrome staining.

Results

Three weeks post MI, LV end-systolic (53.2±5.9μl;***p≤0.001;n = 5) and end-diastolic volumes (82.7±5.6μl;*p<0.05;n = 5) were significantly increased in BC−/EC+, along with decreased LV developed pressure (67.5±1.8mmHg;n = 18;***p≤0.001) and increased scar size/left ventricle (19.5±1.5%;n = 13;**p≤0.01) compared to BC+/EC+ (ESV:35.6±2.2μl; EDV:69.1±2.6μl n = 8; LVDP:83.2±3.2mmHg;n = 24;scar size/LV13.8±0.7%;n = 16). Myocardial scar of BC−/EC+ was characterized by increased total collagen content (20.2±0.8%;n = 13;***p≤0.001) compared to BC+/EC+ (15.9±0.5;n = 16), and increased collagen type I and III subtypes.

Conclusion

Circulating NOS3 ameliorates maladaptive left ventricular remodeling following reperfused myocardial infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号