首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

2.
Human driven changes in land‐use have increased the need to understand how landscape structure affects species distribution. We studied how forest edges affected the distribution of birds in grasslands recently encroached by forest patches. We investigated how species’ biological traits influenced their response to vegetation change near forest edges. We censured birds along 300‐m line transects run into the open habitat perpendicularly to forest edges. We recorded habitat variables and landscape context along each transect and characterized edges and forest patches. We recorded 33 bird species in 153 transects for a total of 654 individuals. We analyzed species response to edges with generalized linear mixed models. Habitat preference was prevalent to explain species response to forest edges. The abundance of open‐habitat birds such as skylark Alauda arvensis decreased significantly in the vicinity of edges. This negative response extended within 150 m from the edge. The effect was disproportionately higher in open‐habitat species with high conservation concern. The abundance of species feeding or/and breeding in both forest and open habitat, such as woodlarks Lullula arborea, sharply increased near edges (positive edge response). Abundance of shrub and non‐shrub dependent species increased with distance to edge. The two species groups did no differ in abundance/distance to edge relationship. Intensity of species response to forest edges varied among transects in relation to transect vegetation characteristics. Edge length or aspect, diet and nest height had no direct effect. We discuss the possible role of variation in resources and nest predation risk to explain observed patterns.  相似文献   

3.
Changes in the distribution and abundance of bird and small mammal species at urban-wildland edges can be caused by different factors. Edges can affect populations directly if animals respond behaviorally to the edge itself or if proximity to edge directly affects demographic vital rates (an "ecotonal" effect). Alternatively, urban edges can indirectly affect populations if edges alter the characteristics of the adjacent wildland vegetation, which in turn prompts a response to the altered habitat (a "matrix" or "habitat" effect). We studied edge effects of birds and small mammals in southern Californian coastal sage scrub, and assessed whether edge effects were attributable to direct behavioral responses to edges or to animal responses to changes in habitat at edges. Vegetation species composition and structure varied with distance from edge, but the differences varied among study sites. Because vegetation characteristics were correlated with distance from edge, responses to habitat were explored by using independently-derived models of habitat associations to calibrate vegetation measurements to the habitat affinities of each animal species. Of sixteen species examined, five bird and one small mammal species responded to edge independently of habitat features, and thus habitat restoration at edges is expected to be an ineffective conservation measure for these species. Two additional species of birds and one small mammal responded to habitat gradients that coincided with distance from edge, such that the effect of edge on these species was expressed via potentially reversible habitat degradation.  相似文献   

4.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

5.
Forest edge and diversity: carabids along forest-grassland transects   总被引:8,自引:0,他引:8  
Diversity relationships of carabids in forest edges and the neighbouring forest interior and the surrounding grassland are studied. Samples were taken along three replicated forest-grassland transects using pitfall traps in the Aggtelek National Park in Hungary during 2 years. The study revealed significant edge effect on the carabids. The Shannon diversity of carabids were significantly higher in the forest edge and the grassland than in the forest interior. Carabids of the forest interior, forest edge and grassland can be separated from each other by ordinations, both on the species composition and abundance, suggesting that all three habitats have a distinct species assemblage. Moreover, indicator species analysis detected significant edge associated species; based on the specificity and fidelity of the carabids we have distinguished five groups of species: habitat generalists, grassland-associated species, forest generalists, forest specialists, and edge-associated species. Multiple linear regression analyses showed that relative air moisture, temperature of the ground and cover of the herbs are the most important factors determining the diversity of carabids along the transects. Our results show that the high diversity of carabids in forest edges is due to the edge-associated species and the presence of species characteristic to the adjacent habitats. The significance of forest edges in nature conservation, serving as a source habitat for dispersal processes, contributing to the recolonization of carabids after habitat destruction or other disturbance is emphasized.  相似文献   

6.
Edge effects are a widespread and ubiquitous ecological phenomenon, yet they remain poorly studied across edges between restored and natural forests. To address this lack of knowledge, we studied vertebrate communities across edges between 3‐year old restored mine‐pits and adjacent unmined forest in the jarrah (Eucalyptus marginata) forest of south‐western Australia. We found that mammal communities showed no edge response but reptile communities did. Overall reptile abundance and Morethia obscura abundance were higher in unmined forest along edges, Egernia napoleonis abundance was lower in unmined forest along edges, while Pogona minor abundance was lower in restored mine‐pits along edges. Predictive models were unable to predict species edge responses, due to the lack of knowledge of the ecology of jarrah forest reptiles, but proved useful in identifying potential ecological mechanisms behind observed edge responses and suggested that potential mechanisms were likely different for each species. Our study is the first to show edge responses in both habitats forming the edge between restored and natural forests, emphasizing the importance of studying both habitats forming the edge. Our results also suggest that, despite being poorly studied, edge responses are common across edges between restored and natural forest and result from a variety of ecological mechanisms. An increased understanding of the ecological mechanisms driving edge responses across edges between restored and natural forests will improve our ability to integrate restored areas into cross‐landscape management and, ultimately, improve our ability to manage landscapes for biodiversity conservation.  相似文献   

7.
Urban landscapes often expose wildlife populations to enhanced edge effects where the biotic and abiotic attributes of native ecosystems have been significantly altered. While some species may respond favourably to edges, there are likely to be varying negative consequences for many forest‐dependent species. In particular, marsupial gliders are influenced by changes in forest composition and structure near edges due to highly specific feeding and nesting requirements, and a high reliance on tree cover to traverse a landscape. We addressed this problem using the squirrel glider (Petaurus norfolcensis) in the fragmented urban landscape of southeast Queensland, Australia. Analysis of variance was applied to determine differences in habitat resources and structure in relation to glider presence and trap success rates in forest fragment interiors compared with road (minor & major) and residential edge habitats. We postulate that an increased presence of squirrel gliders in sites adjacent to minor road and residential edges may be due to the availability of additional resources and/or varying dispersal opportunities. Conversely, forest fragment interiors contain a higher abundance of nest hollows and large trees, together with a greater floristic species richness providing more reliable seasonal foraging sources, which may explain the greater trap success rates of squirrel gliders in these sites. We conclude that while forest fragment interiors provide habitat suitable for year‐round use by greater numbers of squirrel gliders, the conservation value of some edge habitats that provide additional resources and dispersal opportunities should not be underestimated for forest‐dependent mammals; however, each edge type must be assessed individually.  相似文献   

8.
We studied carabid beetle abundance at eight forest-farmland edges using pitfall traps across 60-m gradients (30 m into the forest, 30 m into the adjacent farmland) in southern Finland in May–August 2001. Carabid assemblages changed gradually across the studied gradients, the most drastic changes occurring right at the edge (5 m). Forest-associated carabids were often caught in farmland habitat within 20–30 m from the edges, and open-habitat carabids were also caught in the forest patches. However, these two groups responded to the edge in slightly different ways. Forest carabids were abundant all across the gradient from forest interior to the edge ( 80 m 9), while open-habitat carabids showed a drastic abundance decrease toward the forest, 5–10 m before the edge the abundance-change slope across the edge: gradient was steeper for open-habitat than for forest carabids. Wing-dimorphic and long-winged carabids increased more steeply from forest to farmland, compared to short-winged carabids. Moreover, carabids associated with dry and moist habitat showed indications of stronger response to the edge than did eurytopic species. The pair-wise comparisons between predatory/mixed-diet carabids and seed-eaters, spring and autumn breeders, and day- and night-active species did not indicate edge-response differences.  相似文献   

9.
Habitat fragmentation and the widespread creation of habitat edges have recently stimulated interest in assessing the effects of ecotones on biodiversity. Ecotones, natural or anthropogenic, can greatly affect faunal movement, population dynamics, species interactions, and community structure. Few data exist, however, on insect community response to forest–savanna ecotones, a natural analog to anthropogenically cleared areas adjacent to forest. In this study, the abundance, total biomass, average individual biomass, and distribution of scarabaeine dung beetles were examined at a sharp tropical evergreen forest–savanna ecotone in Santa Cruz, Bolivia. The abundance, total biomass, and average individual biomass of dung beetles varied significantly across the forest, edge, and savanna habitats. Species richness (Sobs) also varied significantly across the three habitats, but statistical estimations of true species richness (Sest) did not. Habitat specificity of the dung beetles in this study was extremely high. Of the 50 most common species collected during the study, only 2 species were collected in both the forest and savanna habitats, signaling nearly complete community turnover in just a few meters. Strong edge effects were evidenced by the decline in abundance, total biomass, and species richness at the forest‐savanna boundary.  相似文献   

10.
Fragmented urban forest remnants are characterised by sharp edges and are bordered by various land-use types, which may have a considerable effect on the fauna and flora at forest edges, and into forest interiors. To investigate the effects of differentially contrasting edges (low vs. intermediate vs. high) on carabid beetle assemblages in urban boreal forests, we placed pitfall traps along a gradient from 6?m into three matrix types (secondary forest vs. grassland vs. asphalt) up to 60?m into urban forest patches in the cities of Vantaa and Helsinki, southern Finland. Individual species and carabid beetle assemblages were strongly affected by edge contrasts and distance from the forest edge. The strongest effect on individual species was caused by high contrasting edges: generalist and open-habitat species were favoured or not affected while forest specialists were affected negatively. Effects of the abundances of potential prey and competitors on the carabid beetles were also evaluated. Forest and moisture-associated carabid species were negatively to neutrally associated with springtail abundances while generalist and open habitat, and dryness associated species were more positively related to springtail abundances (a potential food source). In terms of potential competitors, forest and moisture-associated carabid species were negatively and/or neutrally affected by ant and wood ant numbers, while generalist and open-habitat species were neutrally to positively associated with these taxa. It appears that carabid beetle habitat associations are more important in the responses of these beetles across edges of different contrast than are the prey and competitor numbers collected there. We recommend the creation of “soft” or low-contrast urban edges if the aim of urban management is to protect forest carabids in cities.  相似文献   

11.
Tropical forest mammal assemblages are widely affected by the twin effects of habitat loss and habitat fragmentation. We evaluated the effects of forest patch metrics, habitat structure, age of patch isolation, and landscape metrics on the species richness, abundance and composition of small mammals at 23 forest fragments (ranging in size from 43 to 7,035 ha) in a highly deforested 3,609-km2 landscape of southwestern Brazilian Amazonia. Using pitfall traps and both terrestrial and arboreal traplines of Sherman, Tomahawk and snap traps, we captured a total of 844 individuals over 34,900 trap-nights representing 26 species and 20 genera of small-mammals, including 13 rodent and 13 marsupial species. We also consider the effects of distance from forest edges on species occupancy and abundance. Overall small mammal abundance, species richness and species composition were primarily affected by the quality of the open-habitat matrix of cattle pastures, rather than by patch metrics such as fragment size. Ultimately, small mammal community structure was determined by a combination of both landscape- and patch-scale variables. Knowledge of the anthropogenic factors that govern small mammal community structure is of critical importance for managing the persistence of forest vertebrates in increasingly fragmented neotropical forest landscapes.  相似文献   

12.
Habitat fragmentation often induces edge effects that can increase, decrease or have minimal effect upon the population density of a species, depending upon environmental conditions and the requirements of the species. Using a trapping study and generalized linear mixed models, we evaluated edge effects on small tropical mammals living near roads, including two ground‐dwelling (Akodon sp. and Cerradomys subflavus) and two arboreal (Marmosops incanus and Rhipidomys sp.) species. We examined the relationship of these edge effects to environmental factors at both plot and patch scales. Generalist ground‐dwelling species were attracted to edges, with higher population densities recorded in habitats close to road or matrix edges where vegetation density was lower. In contrast, populations of the generalist arboreal species avoided edge habitats, their populations were found in greater density in habitats far from roads/matrix edges. Thus, our results show that patterns of edge habitat utilization were related to the ecological requirements of each species. These findings are especially important in the tropics, where demand for economic growth in many countries has accelerated the fragmentation process and has recently culminated in increased road construction and expansion. Fragmented habitats promote an increase in edge environments, and consequently will reduce the abundance of arboreal small mammal species, such as those used as models in this study.  相似文献   

13.
Knowledge of the distribution of arthropod vectors across a landscape is important in determining the risk for vector‐borne disease. This has been well explored for ticks, but not for mosquitoes, despite their importance in the transmission of a variety of pathogens. This study examined the importance of habitat, habitat edges, and the scale at which mosquito abundance and diversity vary in a rural landscape by trapping along transects from grassland areas into forest patches. Significant patterns of vector diversity and distinct mosquito assemblages across habitats were found. The scale of individual species' responses to habitat edges was often dramatic, with several species rarely straying even 10 m from the edge. The present results suggest blood‐seeking mosquito species are faithful to certain habitats, which has consequences for patterns of vector diversity and risk for pathogen transmission. This implies that analysts of risk for pathogen transmission and foci of control, and developers of land management strategies should assess habitat at a finer scale than previously considered.  相似文献   

14.
Urbanization is one of the most extreme and rapidly growing anthropogenic pressures on the natural world. It is linked to significant impacts on biodiversity and disruptions to ecological processes in remnant vegetation. We investigated the richness and abundance of wasps in a highly fragmented urban landscape in Sydney, Australia, comparing assemblages in small urban remnants to edges and interiors of continuous areas of vegetation. We detected no difference in wasp abundance or species richness between remnant types indicating that communities are highly resilient to the effects of urbanization at this scale. However, Chao 2 estimates of predicted species richness indicate that edge sites would support a greater richness and abundance of species compared to small and interior sites. Although families were represented evenly across the sites, interior and edge sites supported more species within families. Wasp composition was significantly affected by the temporal variation and trap location (arboreal or ground), particularly at the family level demonstrating high species turnover and discrimination in vertical space. These sampling effects and temporal inconsistencies highlight the hazards of relying on one-off snapshot surveys and uncorrected datasets for assessments of diversity and responses to urban landscapes. The strong resilience of wasp communities to urbanization when assessed at coarse scales indicates that responses at finer spatial and taxonomic scales are critical to understanding the maintenance of ecosystem function in highly modified landscapes.  相似文献   

15.
Predation causes most nest failure in birds. Predator communities are likely to vary across a gradient of increasing urbanization, so nest predation also is likely to vary across this gradient. Although predation is thought to decline with increasing urbanization, relatively little is known about variation in predation pressure within strata along an urban gradient and how factors known to affect nest success, such as nest location, interact with urban variables, such as human housing density. Native habitats are frequently fragmented and isolated by suburban residential development, thus we quantified predation rates on artificial nests located in natural oak scrub patches within a suburban matrix in south-central Florida. We examined patterns of predation based on nest location relative to habitat edges, artificial nest weathering treatment, nest shrub height, and human housing density. Over two 18-d trials, we placed a total of 240 nests, each containing a single quail egg and a clay sham, along three roadside transects. Nest predation was not influenced by proximity to edge, nest weathering, or trial date, but was highest at high housing density and lowest at low housing density. The proportion of quail eggs removed from nests increased with human housing density. Birds were the most frequent predators of artificial nests, but the relative frequency of predation by birds or mammals did not differ relative to any of our treatments. Higher rates of nest predation with increasing human housing density within suburban habitats may reflect changes in habitat structure and composition that increase the vulnerability of nests to predation or changes in the composition of the predator community. Our results modify the conclusions of previous studies by suggesting that at scales smaller than the entire urban gradient, nest predation may increase with human housing density, one common measure of urbanization.  相似文献   

16.
Rivers represent natural edges in forests, serving as transition zones between landscapes. Natural edge effects are important to study to understand how intrinsic habitat variations affect wildlife as well as the impact of human-induced forest fragmentation. We examined the influence of riparian and anthropogenic edge on mantled howler, white-faced capuchin, Central American spider monkeys, and vegetation structure at La Suerte Biological Research Station (abbreviated as LSBRS), Costa Rica. We predicted lower monkey encounter rate, tree species richness, and median dbh at both edge types compared to interior and that monkeys would show species-specific responses to edge based on size and diet. We expected large, folivorous–frugivorous howler monkeys and small, generalist capuchins would be found at increased density in forest edge, while large, frugivorous spider monkeys would be found at decreased density in forest edge. We conducted population and vegetation surveys along interior, riparian, and anthropogenic edge transects at LSBRS and used GLMM to compare vegetation and monkey encounter rate. Tree species richness and median dbh were higher in forest interior than anthropogenic edge zones. Although spider monkey encounter rate did not vary between forest edges and interior, howler monkeys were encountered at highest density in riparian edge, while capuchins were encountered at highest density in anthropogenic edge. Our results indicate that diverse forest edges have varying effects on biota. Vegetation was negatively affected by forest edges, while monkey species showed species-specific edge preferences. Our findings suggest that riparian zones should be prioritized for conservation in Neotropical forests.  相似文献   

17.
The effects of forest edge on ant species richness and community composition were examined within an urbanized area of northeast Ohio. The ground-dwelling ant fauna was inventoried in three deciduous forest fragments that have resulted from human disturbance. We surveyed ants via leaf-litter extraction along 150 m transects positioned perpendicular to the forest edge. We collected 4,670 individuals from 14 genera and 29 species. Samples closest to the forest edge contained more species and accumulated species at a higher rate than did samples located in the forest interior. Our rarefied and expected richness estimates revealed a decline of species richness from edge to forest interior. The higher ant richness at the forest edge was due mostly to the presence of species characteristic of the neighboring open habitats. Although most of the typical forest ant species were represented equally at the edge and at the forest interior, a few responded to the presence of edges with changes in their relative abundance and frequency of occurrence. Forest edges had a higher proportion of opportunistic species and a lower proportion of cryptic ants, whereas interior locations exhibited a more even distribution among ant functional groups. In addition, we documented a community composition shift between the edge and the forest interior. Consistent with previous findings, we suggest that the edge effects are most pronounced within 25 m of the forest edge, which may have implications for the overall conservation of forest-dwelling fauna.  相似文献   

18.
When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.  相似文献   

19.
Forest edges are known to consist of microenvironments that may provide habitat for a different suite of species than forest interiors. Several abiotic attributes of the microenvironment may contribute to this change across the edge to center gradient (e.g., light, air temperature, soil moisture, humidity). Biotic components, such as seed dispersal, may also give rise to changes in species composition from forest edge to interior. We predicted that abiotic and biotic measures would correlate with distance from forest edge and would differ among aspects. To test these predictions, we measured abiotic and biotic variables on twelve 175 m transects in each of two 24 ha forest fragments in east-central Illinois that have remained in continuous isolation for upwards of 100 years. Both univariate and multivariate techniques were used to best describe the complex relationships among abiotic factors and between abiotic and biotic factors. Results indicate that microclimatic variables differ in the degree to and distance over which they show an edge effect. Relative humidity shows the widest edge, while light and soil moisture have the steepest gradients. Aspect influences are evidenced by the existence of more pronounced edge effects on south and west edges, except when these edges are protected by adjacent habitat. Edges bordered by agricultural fields have more extreme changes in microclimate than those bordered by trees. According to PCA results, species richness correlates well with microclimatic variation, especially light and soil moisture; however, in many cases species richness had a different depth of edge influence than either of these variables. The herbaceous plant community is heavily dominated by three species. Distributions of individual species as well as changes in plant community composition, estimated with a similarity index, indicate that competition may be influencing the response of the vegetation to the edge to interior gradient. This study indicates that edge effects must be considered when the size and potential buffering habitat of forest preserves are planned.  相似文献   

20.
In fragmented landscapes, ecological processes may be significantly influenced by edge effects, but few data are available for edge effects across forest–farmland edges. We investigated patterns of species richness, abundance, and species composition in ground beetles across forest–farm edges in two different agro-forest landscapes in Korea. Nine and five sites were selected from Hwaseong, a fragmented landscape, in 2011 and 2012, respectively, while eight sites were selected from Hoengseong, a relatively well-protected landscape, in 2012. Ground beetles were collected by pitfall trapping. Species richness was higher in the surrounding habitat than in the forest interior or edge in both Hwaseong and Hoengseong. However, in Hwaseong, species richness of the forest edge was similar to that of the forest interior, while in Hoengseong forest edge species richness was intermediate between that of the forest interior and surrounding areas. In addition, non-metric multidimensional scaling based on the combined data of both locations showed that the species composition of ground beetles in the forest edge was more similar to that of the forest interior than the surrounding areas, although some open-habitat species occurred at the forest edges. Three characteristic groups (forest specialists, edge-associated species, and open-habitat species) of ground beetle species were detected by indicator value analysis. In our study, ground beetle assemblages differed in the forest edges of two agro-forest landscapes, suggesting that the edge effect on biota can be influenced by landscape structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号