首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new record of a sauropodomorph dinosaur is here described from the Middle Jurassic (Aalenian) Saltwick Formation of Whitby (Yorkshire), UK. A single caudal vertebra represents an early sauropodomorph and signifies the earliest recognised eusauropod dinosaur from the United Kingdom. The absence of pleurocoels and a narrow, dorsoventrally deep, but craniocaudally short centrum, suggests a primitive sauropodomorph. Distinct spinopostzygopophyseal laminae rise from the lateral margins of the postzygapophyses and pass caudally along what remains of the neural spine, a character unique to a subgroup of sauropods that includes Barapasaurus, Omeisaurus and other neosauropods and eusauropods. The lack of phylogenetically robust characters in sauropod caudal vertebrae usually makes it difficult to establish affinities, but the absence of mild procoely excludes this specimen from both Diplodocoidea and Lithostrotia. The vertebra cannot be further distinguished from those of a wide range of basal sauropods, cetiosaurids and basal macronarians. However, this plesiomorphic vertebra still signifies the earliest stratigraphic occurrence for a British sauropod dinosaur.  相似文献   

2.
Abstract: An isolated anterior caudal vertebra from the Qingshan (= Ch'ing shan) Formation (Early Cretaceous) of Shandong Province, China, is redescribed and shown to be an advanced diplodocid sauropod. This specimen possesses several derived character states that are typically observed in advanced diplodocoids or diplodocids, including the following: a mildly procoelous centrum; a deep pit‐like pneumatic fossa immediately below the caudal rib; wing‐ or fan‐shaped caudal ribs; and complex lamination of the neural spine. The neural spine is apomorphically short and the centrum is short relative to its height compared to those of other diplodocids, which, when coupled with the specimen’s unique geographical location and stratigraphical age, suggests that it probably represents a new taxon. This caudal vertebra provides the first convincing evidence that diplodocids were present in Asia, perhaps as a result of the dispersal of neosauropod lineages from Europe and/or North America during the Early Cretaceous. The discovery of a member of the Diplodocidae in the Early Cretaceous also indicates that this clade did not become extinct at the Jurassic/Cretaceous boundary as previously supposed.  相似文献   

3.
4.

Background

The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification.

Principal Findings

A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography.

Conclusions

Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.  相似文献   

5.
Peter M. Galton 《Geobios》1980,13(6):825-837
Hitherto the earliest positive record of ankylosaurs(armored dinosaurs) has been from beds well up in the Lower Cretaceous; in fact, however, specimens referable to the ankylosaurian family Nodosauridae are present in the Middle and Upper Jurassic of England: from the Middle Callovian [partial mandible Sarcolestes leedsiLydekker]], the Upper Oxfordian [femur Cryptodraco eumerus (Seeley)), maxilla Priodontognathus phillipsii (Seeley))], and the Upper Tithonian [caudal vertebra, tooth]. The Tithonian tooth and those of Priodontognathus are large and similar to those of the nodosaurids Priconodon and Sauropelta (Lower Cretaceous, U.S.A.). The incomplete mandible of Sarcolestes is similar to that of Sauropelta with a dermal scute fused to the lateral surface, and a tooth row extending to the anterior end of the jaw; an unusual feature is the caniniform first tooth. The quadrupedal ankylosaurs and stegosaurs probably represent separate evolutionary lines that extend back at least into the Lower Jurassic, and both lines probably evolved from ornithopod dinosaurs that were bipedal. Nodosaurid ankylosaurs occur in Europe from the Middle Jurassic to Late Cretaceous and probably reached North America via a filter route in the early Cretaceous.  相似文献   

6.
Abstract:  Up to now, more than 40 dinosaur sites have been found in the latest Jurassic – earliest Cretaceous sedimentary outcrops (Villar del Arzobispo Formation) of Riodeva (Iberian Range, Spain). Those already excavated, as well as other findings, provide a large and diverse number of sauropod remains, suggesting a great diversity for this group in the Iberian Peninsula during this time. Vertebrae and ischial remains from Riodevan site RD-13 are assigned to Turiasaurus riodevensis (a species described in RD-10, Barrihonda site), which is part of the Turiasauria clade. This is the first time that a taxon is attributed to Turiasaurus genus out of its type site. A Neosauropod caudal vertebra from the RD-11 site has been classified as Diplodocinae indet., supporting the previous attribution on an ilion also found in Riodeva (CPT-1074) referring to the Diplodocidae clade. New remains from the RD-28, RD-41 and RD-43 sites, of the same age, among which there are caudal vertebrae, are assigned to Macronaria. New sauropod footprints from the Villar del Arzobispo Formation complete the extraordinary sauropod record coming to light in the area. The inclusion of other sauropods from different contemporaneous exposures in Teruel within the Turiasauria clade adds new evidence of a great diversity of sauropods in Iberia during the Jurassic–Cretaceous transition. Turiasauria distribution contributes to the understanding of European and global palaeobiogeography.  相似文献   

7.
8.
《Palaeoworld》2016,25(3):431-443
A cervical vertebra preserved at the famous and productive Cleveland-Lloyd Dinosaur Quarry in the Upper Jurassic Morrison Formation of Utah is that of an Apatosaurus, a sauropod dinosaur genus not previously recognized at the site and the first new dinosaur taxon identified at the site in years. The presence of Apatosaurus at a mudstone site dominated by other taxa, both theropod and sauropod, suggests a pattern of preservation within the Morrison Formation in which sites in fine-grained sediments yield dramatically uneven relative abundances of dinosaurs, with variable dominant taxa by site, compared with more time-averaged and attritional coarse-grained channel sandstone deposits. In addition, the continued demonstration of the wide-spread occurrence and abundance of Apatosaurus within the Morrison Formation, and the absence of its clade among diplodocid faunas on other continents, suggest that this group may have been endemic to North America during the Late Jurassic and that it may have originated there, though this is far from clear.  相似文献   

9.
Sauropod dinosaurs have been found in sediments dating to most of the Cretaceous Period on all major Mesozoic landmasses, but this record is spatiotemporally uneven, even in relatively well-explored North American sediments. Within the 80 million-year-span of the Cretaceous, no definitive sauropod occurrences are known in North America from two ca. 20–25 million-year-long gaps, one from approximately the Berriasian–Barremian and the other from the mid-Cenomanian–late Campanian. Herein, we present an undescribed specimen that was collected in the middle part of the twentieth century that expands the known spatiotemporal distribution of Early Cretaceous North American sauropods, partially filling the earlier gap. The material is from the Berriasian–Valanginian-aged (ca. 139 Ma) Chilson Member of the Lakota Formation of South Dakota and appears to represent the only non-titanosauriform from the Cretaceous of North America or Asia. It closely resembles Camarasaurus and may represent a form closely related to that genus that persisted across the Jurassic–Cretaceous boundary.  相似文献   

10.
11.
《Palaeoworld》2021,30(3):495-502
The Xixipo dinosaur tracksite in the Chuanjie Formation of Yunnan Province is one of the 14 Chinese sites yielding sauropod tracks from between the Triassic–Jurassic and Jurassic–Cretaceous boundaries, but is only one of the two that represent the Middle Jurassic. Although it is a small site, it adds incrementally to the overall track record of the region and allows comparison with the body fossil record and classification of the Chuanjie Formation as a Type 3b or Type 4b deposit in which both the body fossil and trace fossil record, in this case representing sauropodomorphs, are similar in composition and frequency of occurrence. We argue that the sauropod trace and body fossil records, while based on different categories of evidence, are very important. Integrating and correlating all available data from both records increases our understanding of sauropod communities, and both are equally valuable for this. In addition, we also discuss narrow to wide gauge, coeval sauropod trackways from China, and the relationship between the potential trackmaker of China's Jurassic Brontopodus-type trackways and mamenchisaurids and, beginning from the Late Jurassic, representatives of this type and titanosauriform sauropods.  相似文献   

12.

Nine dinosaur ichnospecies from the Lower Jurassic to Upper Cretaceous of Japan, including two that are new, are described herein. The new ichnotaxa are Asianopodus pulvinicalx ichnogen. et ichnosp. nov. and Schizograllator otariensis ichnosp. nov. The Japanese ichnotaxa are allied to Lower Jurassic ichnospecies in South China, North America, Western Europe and South Africa, and Upper Jurassic to Lower Cretaceous ichnospecies from Southeast and East Asia. This suggests they were part of a global ichnofauna before continental drift began in the Middle Jurassic, leading to the development of a more endemic dinosaur fauna in the Cretaceous. At least two assemblages, an ornithopod-gracile-toed theropod-dominated community, in northeastern Asia, and a robust theropod- and sauropod-dominated community in the southern part of the continent, existed in the Cretaceous. This parallels North American dinosaur distribution patterns in the Cretaceous and seems to be a reflection of paleolatitudinal controls.  相似文献   

13.
The Upper Jurassic of the Lusitanian Basin (Portugal) is particularly rich in sauropod fossil remains, with four established taxa: Dinheirosaurus, Lusotitan, Lourinhasaurus and Zby. The presence of sauropod caudal procoelous vertebrae is reported for the first time in the Upper Jurassic of Portugal, with specimens described from the localities of Baleal, Paimogo, Praia da Areia Branca, Porto das Barcas, and Praia da Corva. The presence of slightly procoelous centra and fan-shaped caudal ribs with smooth prezygapophyseal centrodiapophyseal fossa in the more anterior caudal vertebrae allows for the assignment of these specimens to an indeterminate eusauropod, probably belonging to a non-neosauropod eusauropod form. The absence of several features in the Portuguese specimens that are common in diplodocids, mamenchisaurids and titanosaurs, prevents the establishment of sound relationships with these clades. The described specimens are almost identical to the anterior caudal vertebrae of the Iberian turiasaur Losillasaurus. During the Iberian Late Jurassic, Turiasauria is the only Iberian group of sauropods, which shares this type of morphology with the Baleal, Paimogo, Praia da Areia Branca, Porto das Barcas and Praia da Corva specimens. These specimens represent one of the four anterior caudal vertebral morphotypes recorded in the Upper Jurassic of the Lusitanian Basin and briefly described herein.  相似文献   

14.
Whitlock JA 《PloS one》2011,6(4):e18304

Background

As gigantic herbivores, sauropod dinosaurs were among the most important members of Mesozoic communities. Understanding their ecology is fundamental to developing a complete picture of Jurassic and Cretaceous food webs. One group of sauropods in particular, Diplodocoidea, has long been a source of debate with regard to what and how they ate. Because of their long lineage duration (Late Jurassic-Late Cretaceous) and cosmopolitan distribution, diplodocoids formed important parts of multiple ecosystems. Additionally, fortuitous preservation of a large proportion of cranial elements makes them an ideal clade in which to examine feeding behavior.

Methodology/Principal Findings

Hypotheses of various browsing behaviors (selective and nonselective browsing at ground-height, mid-height, or in the upper canopy) were examined using snout shape (square vs. round) and dental microwear. The square snouts, large proportion of pits, and fine subparallel scratches in Apatosaurus, Diplodocus, Nigersaurus, and Rebbachisaurus suggest ground-height nonselective browsing; the narrow snouts of Dicraeosaurus, Suuwassea, and Tornieria and the coarse scratches and gouges on the teeth of Dicraeosaurus suggest mid-height selective browsing in those taxa. Comparison with outgroups (Camarasaurus and Brachiosaurus) reinforces the inferences of ground- and mid-height browsing and the existence of both non-selective and selective browsing behaviors in diplodocoids.

Conclusions/Significance

These results reaffirm previous work suggesting the presence of diverse feeding strategies in sauropods and provide solid evidence for two different feeding behaviors in Diplodocoidea. These feeding behaviors can subsequently be tied to paleoecology, such that non-selective, ground-height behaviors are restricted to open, savanna-type environments. Selective browsing behaviors are known from multiple sauropod clades and were practiced in multiple environments.  相似文献   

15.
16.
The diversification and early evolution of neosauropod dinosaurs is mainly recorded from the Upper Jurassic of North America, Europe, and Africa. Our understanding of this evolutionary stage is far from complete, especially in the Southern Hemisphere. A partial skeleton of a large sauropod from the Upper Jurassic Cañadón Calcáreo Formation of Patagonia was originally described as a ‘cetiosaurid’ under the name Tehuelchesaurus benitezii. The specimen is here redescribed in detail and the evidence presented indicates that this taxon is indeed a neosauropod, thus representing one of the oldest records of this clade in South America. A complete preparation of the type specimen and detailed analysis of its osteology revealed a great number of features of phylogenetic significance, such as fully opisthocoelous dorsal vertebrae, the persistence of true pleurocoels up to the first sacral vertebra, associated with large camerae in the centrum and supraneural camerae, and an elaborate neural arch lamination, including two apomorphic laminae in the infradiapophyseal fossa. The phylogenetic relationships of this taxon are tested through an extensive cladistic analysis that recovers Tehuelchesaurus as a non‐titanosauriform camarasauromorph, deeply nested within Neosauropoda. Camarasauromorph sauropods were widely distributed in the Late Jurassic, indicating a rapid evolution and diversification of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 605–662.  相似文献   

17.
Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian–Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr.  相似文献   

18.
19.
20.
The mid-Cretaceous of North America and Europe has long been noted for the absence of sauropod dinosaurs, leading several authors to suggest that this depauperate interval is a consequence of an end-Albian sauropod extinction. This time period has become known as the ‘mid-Cretaceous sauropod hiatus’, with the subsequent presence of titanosaurian sauropods in the latest Cretaceous of North America and Europe interpreted as the result of dispersal of taxa from South America and Africa, respectively. However, several lines of evidence indicate that this hiatus is probably a sampling artefact. New fossil and trackway discoveries have considerably shortened the hiatus, reducing it to the Turonian–early Campanian in North America, and to just two short intervals in the late Cenomanian–early Turonian and late Coniacian–Santonian of Europe. Palaeoenvironmental analyses of sauropods demonstrate an inland terrestrial preference for titanosaurs, the dominant Late Cretaceous sauropods; however, during the hiatus there was a decline in inland deposits and increase in coastal sediments in Europe and North America, which would have greatly reduced the probability of preserving titanosaurs. Neither the decline in inland deposits, nor the ‘sauropod hiatus’, occurred elsewhere in the world. Statistical comparisons also demonstrate a significant positive correlation between fluctuations in inland deposits and sauropod occurrences during the mid–Late Cretaceous in Europe and North and South America. Lastly, cladistic analyses do not place latest Cretaceous North American and European titanosaurs within South American and African clades, contradicting the predictions of the ‘austral immigrant’ hypothesis. The latter hypothesis also receives little support from biogeographical analysis of dispersal among titanosaurs. Thus, the ‘sauropod hiatus’ of North America and Europe is most plausibly interpreted as the product of a sampling bias pertaining to the rarity of inland sediments and dominance of coastal deposits preserved in these two regions during the mid-Cretaceous. The presence of titanosaurs in these areas during the latest Cretaceous can be explained by dispersal from Southern Hemisphere continents, but this is no more probable than descent from Early Cretaceous incumbent faunas or dispersal from Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号