首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of mitogenic stimulation of human T lymphocytes to alter the expression of genes involved in sterol metabolism was examined. Messenger RNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and low density lipoprotein (LDL) receptor were quantified in resting and mitogen-stimulated T lymphocytes by nuclease protection assay. Mitogenic stimulation increased HMG-CoA synthase mRNA levels by 5-fold and LDL receptor by 4-fold when cells were cultured in lipoprotein-depleted medium whereas HMG-CoA reductase gene expression was not significantly increased. When cultures were supplemented with concentrations of low density lipoprotein sufficient to saturate LDL receptors, expression of all three genes was inhibited in resting lymphocytes, as effectively as was noted with fibroblasts. Similarly, LDL down-regulated gene expression in mitogen-activated lymphocytes so that mitogenic stimulation did not increase either HMG-CoA reductase or synthase mRNA levels, although LDL receptor gene expression was enhanced. These results indicate that expression of three of the genes involved in sterol metabolism is differentially regulated by LDL and mitogenic stimulation. Moreover, the increase in rates of endogenous sterol synthesis and the activity of HMG-CoA reductase in mitogen-stimulated T lymphocytes cannot be accounted for by increases in HMG-CoA reductase mRNA levels.  相似文献   

2.
Candidate gene association studies implicate the detection of contributing single nucleotide polymorphism (SNP) for the target traits and have been recommended as a promising technique to anatomize the complex characters in plants. The ERECTA gene in plants controls different physiological functions. In this study, we identified SNPs in 1.1 kb partial sequences of TaER-1 and TaER-2 of wheat (Triticum aestivum L.). Thirty-nine SNPs were identified in the coding regions of TaER-1 gene in 33 wheat genotypes, of which 20 SNPs caused non-synonymous mutations while 19 SNPs produced synonymous mutations; 31 SNPs were located in the coding regions of TaER-2 gene in 26 genotypes, of which 18 SNPs caused non-synonymous mutations and 13 SNPs caused synonymous mutations. In addition, 32 SNPs in TaER-1 and 9 SNPs in TaER-2 were also identified in the non-coding regions. Moreover, the significant genetic associations of SNPs of TaER-1 and TaER-2 genes with carbon isotope discrimination, stomatal conductance, photosynthetic rate, transpiration rate, intrinsic water use efficiency (iWUE), leaf length, leaf width, stomatal density, epidermal cell density, and stomatal index were noted in wheat genotypes. This study confirms the importance of TaER-1 and TaER-2 genes which could improve iWUE of wheat by regulating leaf gas exchange and leaf structural traits. These identified SNPs may play a critical role in molecular breeding by means of marker-assisted selection.  相似文献   

3.
4.
5.
6.
The coexistence of wild boars and domestic pigs across Eurasia makes it feasible to conduct comparative genetic or genomic analyses for addressing how genetically different a domestic species is from its wild ancestor. To test whether there are differences in patterns of genetic variability between wild and domestic pigs at immunity-related genes and to detect outlier loci putatively under selection that may underlie differences in immune responses, here we analyzed 54 single-nucleotide polymorphisms (SNPs) of 19 immunity-related candidate genes on 11 autosomes in three pairs of wild boar and domestic pig populations from China, Iberian Peninsula, and Hungary. Our results showed no statistically significant differences in allele frequency and heterozygosity across SNPs between three pairs of wild and domestic populations. This observation was more likely due to the widespread and long-lasting gene flow between wild boars and domestic pigs across Eurasia. In addition, we detected eight coding SNPs from six genes as outliers being under selection consistently by three outlier tests (BayeScan2.1, FDIST2, and Arlequin3.5). Among four non-synonymous outlier SNPs, one from TLR4 gene was identified as being subject to positive (diversifying) selection and three each from CD36, IFNW1, and IL1B genes were suggested as under balancing selection. All of these four non-synonymous variants were predicted as being benign by PolyPhen-2. Our results were supported by other independent lines of evidence for positive selection or balancing selection acting on these four immune genes (CD36, IFNW1, IL1B, and TLR4). Our study showed an example applying a candidate gene approach to identify functionally important mutations (i.e., outlier loci) in wild and domestic pigs for subsequent functional experiments.  相似文献   

7.
The ERG24 gene, encoding the C-14 sterol reductase, has been reported to be essential to the aerobic growth of Saccharomyces cerevisiae. We report here, however, that strains with null mutations in the ERG24 gene can grow on defined synthetic media in aerobic conditions. These sterol mutants produce ignosterol (ergosta-8,14-dienol) as the principal sterol, with no traces of ergosterol. In addition, we mapped the ERG24 gene to chromosome XIV between the MET2 and SEC2 genes. Our results indicate that ignosterol can be a suitable sterol for aerobic growth of S. cerevisiae on synthetic media and that inactivation of ERG24 is only conditionally lethal.  相似文献   

8.
Genes of the post-squalene ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been overexpressed in a systematic approach with the aim to construct yeast strains that produce high amounts of sterols from a squalene-accumulating strain. This strain had previously been deregulated by overexpressing a truncated HMG-CoA reductase (tHMG1) in the main bottleneck of the early ergosterol pathway. The overexpression of the gene ERG1 (squalene epoxidase) induced a significant decrease of the direct substrate squalene, a high increase of lanosterol, and a small increase of later sterols. The overexpression of the ERG11 gene encoding the sterol-14alpha-demethylase resulted in a decrease of lanosterol and an increase of downstream sterols. When these two genes were simultaneously overexpressed, later sterols from zymosterol to ergosterol accumulated and the content of squalene was decreased about three-fold, indicating that these steps had limited the transformation of squalene into sterols. The total sterol content in this strain was three-fold higher than in a wild-type strain.  相似文献   

9.
The yeast Candida utilis does not possess an endogenous biochemical pathway for the synthesis of carotenoids. The central isoprenoid pathway concerned with the synthesis of prenyl lipids is present in C. utilis and active in the biosynthesis of ergosterol. In our previous study, we showed that the introduction of exogenous carotenoid genes, crtE, crtB, and crtI, responsible for the formation of lycopene from the precursor farnesyl pyrophosphate, results in the C. utilis strain that yields lycopene at 1.1 mg per g (dry weight) of cells (Y. Miura, K. Kondo, T. Saito, H. Shimada, P. D. Fraser, and N. Misawa, Appl. Environ. Microbiol. 64:1226–1229, 1998). Through metabolic engineering of the isoprenoid pathway, a sevenfold increase in the yield of lycopene has been achieved. The influential steps in the pathway that were manipulated were 3-hydroxy methylglutaryl coenzyme A (HMG-CoA) reductase, encoded by the HMG gene, and squalene synthase, encoded by the ERG9 gene. Strains overexpressing the C. utilis HMG-CoA reductase yielded lycopene at 2.1 mg/g (dry weight) of cells. Expression of the HMG-CoA catalytic domain alone gave 4.3 mg/g (dry weight) of cells; disruption of the ERG9 gene had no significant effect, but a combination of ERG9 gene disruption and the overexpression of the HMG catalytic domain yielded lycopene at 7.8 mg/g (dry weight) of cells. The findings of this study illustrate how modifications in related biochemical pathways can be utilized to enhance the production of commercially desirable compounds such as carotenoids.  相似文献   

10.
Glu-D1y12.K as a novel y-type subunit was found in HMW-GSs encoded at the Glu-D1 locus in the JB20, which a Korean wheat line from F9 lines crossed by Keumkang with Glu-D1d and Chinese Spring (CS) with Glu-D1a alleles. This novel subunit shows faster electrophoretic mobility and lower molecular weight than Dy12 subunit on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The result of linear ion-trap and Fourier-transform mass spectrometry (LTQ-FT-MS) based on two-dimensional electrophoresis (2-DE) showed that the Dy12.K subunit has high similarity against protein ID: P08488 (GLT3_WHEAT) as ‘Glutenin, high molecular weight subunit 12’ form UniProtKB. The gene of the Glu-1Dy12.K subunit is composed of 1962 nucleotide base pairs containing open reading frame (ORF) as 652 amino acids corresponding to about 70.1 kDa. It has four indels (36 bp insertions: two repeated 18 and 24 bp deletion: two deletions with 6?+?18 bp) and 21 SNPs compared to Glu-1Dy10 (GI: 164457872 in NCBI), and one deletion (18 bp) and three SNPs compared to Glu-1Dy12 (GI: 1036031968) by DNA markers. Consequentially, in comparison with Dy10, 13 SNPs were non-synonymous SNPs and eight SNPs were synonymous SNPs of 21 SNPs. In comparison with Dy12, only one SNP was non-synonymous SNP of three SNPs. Furthermore, the deduced peptide sequences as ‘TGQGQQ’ corresponding to ‘AACAGGACAAGGGCAACA’ are deleted only in the Dy12.K subunit.  相似文献   

11.
Pigs have been one of the most important sources of meat for humans, and their productivity has been substantially improved by recent strong selection. Here, we present whole-genome resequencing analyses of 55 pigs of five breeds representing Korean native pigs, wild boar and three European origin breeds. 1,673.1 Gb of sequence reads were mapped to the Swine reference assembly, covering ∼99.2% of the reference genome, at an average of ∼11.7-fold coverage. We detected 20,123,573 single-nucleotide polymorphisms (SNPs), of which 25.5% were novel. We extracted 35,458 of non-synonymous SNPs in 9,904 genes, which may contribute to traits of interest. The whole SNP sets were further used to access the population structures of the breeds, using multiple methodologies, including phylogenetic, similarity matrix, and population structure analysis. They showed clear population clusters with respect to each breed. Furthermore, we scanned the whole genomes to identify signatures of selection throughout the genome. The result revealed several promising loci that might underlie economically important traits in pigs, such as the CLDN1 and TWIST1 genes. These discoveries provide useful genomic information for further study of the discrete genetic mechanisms associated with economically important traits in pigs.  相似文献   

12.
以15个香菇栽培品种为材料,对尿嘧啶核苷酸-胞嘧啶核苷酸激酶基因(UMP-CMP kinase gene,uck1)、分裂原活化蛋白激酶基因(mitogen-activated protein kinase gene,mapk)和外切β-1,3葡聚糖酶基因(exo-β-1,3-glucanase-encoding gene,exg1)进行了部分序列的单核苷酸多态性(single nucleotide polymorphism,SNP)分析。结果表明,测序中出现的双峰,是菌丝双核体细胞中两细胞核之间的差异造成的。在采用uck1、mapk和exg1的3,126bp中,共发现48处多态性位点,发生频率为1/65bp,其中36个属于转换、12个为颠换。从群体发生频率上,38个属于超过10%的常见SNP,10个属于罕见SNP。不同基因的SNP发生频率不同,uck1、mapk和exg1的SNP发生频率分别为1.40%、0.82%和2.41%。外显子区SNP数量高于内含子,3个基因在外显子区域分布28个,内含子分布20个。外显子的28个SNP位点中,11个为错义突变,17个为同义突变。错义突变引起了编码氨基酸的改变。对SNP位点的聚类分析表明,15个栽培品种间存在的多态性位点在1–36之间,15个品种的SNP类型不同。uck1,mapk,exg1的SNP可用于香菇栽培品种的鉴别。  相似文献   

13.
In Saccharomyces cerevisiae and Candida albicans, two enzymes of the ergosterol biosynthetic pathway, oxidosqualene cyclase (Erg7p) and 3-keto reductase (Erg27p) interact such that loss of the 3-keto reductase also results in a concomitant loss of activity of the upstream oxidosqualene cyclase. This interaction wherein Erg27p has a stabilizing effect on Erg7p was examined to determine whether Erg7p reciprocally has a protective effect on Erg27p. To this aim, three yeast strains each lacking the ERG7 gene were tested for 3-ketoreductase activity by incubating either cells or cell homogenates with unlabeled and radiolabeled 3-ketosteroids. In these experiments, the ketone substrates were effectively reduced to the corresponding alcohols, providing definitive evidence that oxidosqualene cyclase is not required for the 3-ketoreductase activity. This suggests that, in S. cerevisiae, the protective relationship between the 3-keto reductase (Erg27p) and oxidosqualene cyclase (Erg7p) is not reciprocal. However, the absence of the Erg7p, appears to affect other enzymes of sterol biosynthesis downstream of lanosterol formation. Following incubation with radiolabeled and non-radiolabeled 3-ketosteroids we detected differences in hydroxysteroid accumulation and ergosterol production between wild-type and ERG7 mutant strains. We suggest that oxidosqualene cyclase affects Erg25p (C-4 sterol oxidase) and/or Erg26p (C-3 sterol dehydrogenase/C-4 decarboxylase), two enzymes that, in conjunction with Erg27p, are involved in C-4 sterol demethylation.  相似文献   

14.
15.

Background

The predominant sterol in the membranes of the alga Chlamydomonas reinhardtii is ergosterol, which is commonly found in the membranes of fungi, but is rarely found in higher plants. Higher plants and fungi synthesize sterols by different pathways, with plants producing cycloartenol as a precursor to end-product sterols, while non-photosynthesizing organisms like yeast and humans produce lanosterol as a precursor. Analysis of the C. reinhardtii genome sequence reveals that this algae is also likely to synthesize sterols using a pathway resembling the higher plant pathway, indicating that its sterols are synthesized somewhat differently than in fungi. The work presented here seeks to establish experimental evidence to support the annotated molecular function of one of the sterol biosynthetic genes in the Chlamydomonas genome.

Methodology/Principal Findings

A gene with homology to the yeast sterol C-5 desaturase, ERG3, is present in the Chlamydomonas genome. To test whether the ERG3 ortholog of C. reinhardtii encodes a sterol C-5 desaturase, Saccharomyces cerevisiae ERG3 knockout strains were created and complemented with a plasmid expressing the Chlamydomonas ERG3. Expression of C. reinhardtii ERG3 cDNA in erg3 null yeast was able to restore ergosterol biosynthesis and reverse phenotypes associated with lack of ERG3 function.

Conclusions/Significance

Complementation of the yeast erg3 null phenotypes strongly suggests that the gene annotated as ERG3 in C. reinhardtii functions as a sterol C-5 desaturase.  相似文献   

16.
17.
18.
19.
The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated almost exclusively with bats—Trypanosoma cruzi Tcbat and the subspecies T. c. marinkellei. We present new information on the genetic variation, geographic distribution, host associations, and potential vectors of these lineages. We conducted field surveys of bats and triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for trypanosomes by microscopy and PCR. We identified parasites at species and genotype levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA) and cytochrome b (cytb) genes and conducted a comparison of nucleotide diversity of the cytb gene. We document for the first time T. cruzi Tcbat and T. c. marinkellei in Ecuador, expanding their distribution in South America to the western side of the Andes. In addition, we found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats. The comparisons of nucleotide diversity revealed a higher diversity for T. c. marinkellei than any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study increased both the number of host species and known geographical ranges of both parasites and suggest potential vectors for these two trypanosomes associated with bats in rural areas of southern Ecuador. The higher nucleotide diversity of T. c. marinkellei supports a long evolutionary relationship between T. cruzi and bats, implying that bats are the original hosts of this important parasite.  相似文献   

20.
We characterized a gene encoding an YchF-related protein, TcYchF, potentially associated with the protein translation machinery of Trypanosoma cruzi. YchF belongs to the translation factor-related (TRAFAC) class of P-loop NTPases. The coding region of the gene is 1185 bp long and encodes a 44.3 kDa protein. BlastX searches showed TcYchF to be very similar (45-86%) to putative GTP-binding proteins from eukaryotes, including some species of trypanosomatids (Leishmania major and Trypanosoma brucei). A lower but significant level of similarity (38-43%) was also found between the predicted sequences of TcYchF and bacterial YyaF/YchF GTPases of the Spo0B-associated GTP-binding protein (Obg) family. Some of the most important features of the G domain of this family of GTPases are conserved in TcYchF. However, we found that TcYchF preferentially hydrolyzed ATP rather than GTP. The function of YyaF/YchF is unknown, but other members of the Obg family are known to be associated with ribosomal subunits. Immunoblots of the polysome fraction from sucrose gradients showed that TcYchF was associated with ribosomal subunits and polysomes. Immunoprecipitation assays showed that TcYchF was also associated with the proteasome of T. cruzi. Furthermore, inactivation of the T. brucei homolog of TcYchF by RNA interference inhibited the growth of procyclic forms of the parasite. These data suggest that this protein plays an important role in the translation machinery of trypanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号