共查询到20条相似文献,搜索用时 0 毫秒
1.
NMR spectroscopy is a principal tool in metabolomic studies and can, in theory, yield atom-level information critical for understanding biological systems. Nevertheless, NMR investigations on biological tissues generally have to contend with field inhomogeneities originating from variations in macroscopic magnetic susceptibility; these field inhomogeneities broaden spectral lines and thereby obscure metabolite signals. The congestion in one-dimensional NMR spectra of biological tissues often leads to ambiguities in metabolite identification and quantification. We propose an NMR approach based on intermolecular double-quantum coherences to recover high-resolution two-dimensional (2D) J-resolved spectra from inhomogeneous magnetic fields, such as those created by susceptibility variations in intact biological tissues. The proposed method makes it possible to acquire high-resolution 2D J-resolved spectra on intact biological samples without recourse to time-consuming shimming procedures or the use of specialized hardware, such as magic-angle-spinning probes. Separation of chemical shifts and J couplings along two distinct dimensions is achieved, which reduces spectral crowding and increases metabolite specificity. Moreover, the apparent J coupling constants observed are magnified by a factor of 3, facilitating the accurate measurement of small J couplings, which is useful in metabolic analyses. Dramatically improved spectral resolution is demonstrated in our applications of the technique on pig brain tissues. The resulting spectra contain a wealth of chemical shift and J-coupling information that is invaluable for metabolite analyses. A spatially localized experiment applied on an intact fish ( Crossocheilus siamensis) reveals the promise of the proposed method in in vivo metabolite studies. Moreover, the proposed method makes few demands on spectrometer hardware and therefore constitutes a convenient and effective manner for metabonomics study of biological systems. 相似文献
3.
The two-dimensional (2D) atomic localization is theoretically investigated via tunable surface plasmon polaritons (SPPs), generated on the metal (Ag) surface coupled to a quantum coherent three-level \(\lambda\)-type medium (\(^{87}\)Rb) embedded as a dielectric host. Such a useful scheme for highly precise atomic localization is reported by using the absorption spectrum of SPPs. Owing to space-dependent light–matter interaction, the sharp localized peaks are observed in a single wavelength domain of 2D space with maximum probability. By properly varying the system parameters, the precision and numbers of the localized peaks are controlled. Consequently, highly efficient and high-resolution atomic localization can be achieved in a region smaller than \(\lambda /20\times \lambda /20\). The spatial resolution of atomic localization is greatly improved as compared to the previously studied cases. These results may have potential useful applications in the fields of quantum nanoplasmonics, nanolithography, and nanophotonics. 相似文献
4.
High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. 相似文献
6.
Anatomic imaging is now a well-developed application of magnetic resonance. Greater capabilities for physiologic characterization should become possible by concomitant application of spectroscopic methods. High-resolution in vitro spectroscopy must first provide a framework upon which in vivo and diagnostic interpretation may be based. Biochemical profiles consisting of quantitation of extracted aqueous metabolites and lipids of particular cells or organs establish an in vitro glossary for what may be found in the intact cell or living subject. A large variety of amino acids, intermediary metabolites, membrane precursors, and nucleotides are detectable in extracts of human peripheral blood lymphocytes, and significant changes in intracellular concentrations have been monitored after lectin-induced activation. Corresponding changes in lipid profile have also been noted. An increasing variety of other cells and tissues are being similarly characterized. Despite its limitations, NMR analysis possesses the unique prospect of providing a noninvasive and nondestructive source of biochemical information. 相似文献
7.
BackgroundTwo-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy is a powerful and non-invasive tool for the analysis of molecular structures, conformations, and dynamics. However, the inhomogeneity of magnetic fields experienced by samples will destroy spectral information and hinder spectral analysis. In this study, a new pulse sequence is proposed based on the modulation of distant dipolar field to recover high-resolution 2D spin-echo correlated spectroscopy (SECSY) from inhomogeneous fields. Method and MaterialBy using the new sequence, the correlation information between coupled spins and the J coupled information with straightforward multiplet patterns can be obtained free from inhomogeneous line broadening. In addition, the new sequence is also suitable for non- J coupled spin systems. Although three-dimensional acquisition is needed, the evolution of indirect detection dimensions is carefully designed and the ultrafast acquisition scheme is utilized to improve the acquisition efficiency. A chemical solution of butyl methacrylate (C 8H 14O 2) in DMSO (C 2H 6SO) in a deshimmed magnetic field was tested to demonstrate the implementation details of the new sequence. The performance of the new sequence relative to the conventional SECSY sequence was shown by using an aqueous solution of main brain metabolites in a deshimmed magnetic field. ConclusionThe results reveal that the new sequence provides an attractive way to eliminate the inhomogeneous spectral line broadening for the spin-echo correlated spectrum and is a promising tool for the study of metabolites in metabonomics, even for the applications on in vivo and in situ high-resolution 2D NMR spectroscopy. 相似文献
8.
Background and PurposeNuclear magnetic resonance (NMR) spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR) spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS) are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR 1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC) technique is explored using fish muscle, fish eggs, and a whole fish as examples. Materials and MethodsIntact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater) are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. ResultsWhen we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. ConclusionDue to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method. 相似文献
11.
While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) 13C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity) further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH) carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars. 相似文献
12.
Thiyl radicals (RS.) are formed when positive muons (μ +) are implanted into solutions of thiocarbonyl compounds (C = S) in ethanol, tetrahydrofuran or formamide solvents. A solvent dependence is found, which reflects changing electronic interactions and overall conformations, suggesting that the properties of RS. radicals may be dependent on the polarity (philicity) of the environment in which they are formed. 相似文献
13.
The aim of this research was to determine the reference ultrasonic velocity ( v) and attenuation coefficient ( α) for 2H, 3H-perfluoropentane (HPFP), 1,1,1,2-tetrafluoroethane (HFA-134a) and 1,1,1,2,3,3,3-tetrafluoroethane (HFA-227) propellants,
for the future purpose of characterising pressurised metered dose inhaler (pMDI) formulations using high-resolution ultrasonic
spectroscopy (HRUS). Perfluoroheptane (PFH) was used as a reference material for HPFP. With its velocity and attenuation coefficient
determined at 25 °C, HPFP was subsequently used as a reference for HFA-134a and HFA-227. It was found that there is a linear
decline in ultrasonic velocity with an increase in temperature. As with HPFP, the ultrasonic velocity of HFA-134a and HFA-227
were successfully calculated at 25 °C. However, the difference in density and viscosity between reference and sample prevented
accurate determination of reference attenuation coefficient for the hydrofluoroalkanes. With ultrasonic velocity alone, dispersion
concentration and stability monitoring for experimental pMDI formulations is possible using HRUS. However, at this point in
time measurement of particle size is not feasible. 相似文献
14.
基因疫苗具有很多独特的优点,已经成为疫苗研究领域的热点。但由于其免疫原性相对较弱,限制了基因疫苗的广泛应用。人们一直在寻求一种理想的基因疫苗运送系统,它不仅能将基因疫苗导入体内,还能提高基因疫苗的免疫原性,诱导机体产生持续高水平的免疫应答反应。 相似文献
15.
Solid-state NMR spectroscopy (SSNMR), coupled with powder X-ray diffraction (PXRD), was used to identify the physical forms of gabapentin in samples prepared by recrystallization, spray drying, dehydration, and milling. Four different crystalline forms of gabapentin were observed: form I, a monohydrate, form II, the most stable at ambient conditions, form III, produced by either recrystallization or milling, and an isomorphous desolvate produced from desolvating the monohydrate. As-received gabapentin (form II) was ball-milled for 45 min in both the presence and absence of hydroxypropylcellulose (HPC). The samples were then stored for 2 days at 50°C under 0% relative humidity and analyzed by 13C SSNMR and PXRD. High-performance liquid chromatography was run on the samples to determine the amount of degradation product formed before and after storage. The 1H T 1 values measured for the sample varied from 130 s for the as-received unstressed material without HPC to 11 s for the material that had been ball-milled in the presence of HPC. Samples with longer 1H T 1 values were substantially more stable than samples that had shorter T 1 values. Samples milled with HPC had detectable form III crystals as well. These results suggest that SSNMR can be used to predict gabapentin stability in formulated products. 相似文献
17.
Proton nuclear magnetic resonance spectroscopy (1H NMR) is a powerful analytical method used to identify and quantitate chemical compounds. In recent years, it has been used to study rates of metabolism in microbes, isolated perfused tissues, intact animals, and human beings. This review highlights some of the more recent biological applications of 1H NMR in the study of metabolic pathophysiology in animals and man. 1H NMR can rapidly analyze complex mixtures of metabolites found in body fluid and biopsy specimens. In vivo 1H NMR methods can measure intracellular pH, a wide variety of metabolites, tissue perfusion, and rates of metabolism of endogenous and exogenous compounds. Using 13C labeled compounds or magnetization transfer techniques metabolic fluxes may be measured in vivo during virtually all normal and abnormal physiological conditions. 相似文献
18.
Solid-state NMR (ssNMR) represents a spectroscopic method to study membrane protein structure and dynamics in lipid bilayers. We present two-dimensional correlation experiments conducted on a fully [ 13C, 15N] labeled version of a chimeric potassium (KcsA-Kv1.3) channel. Data obtained by using two different ion concentrations suggest a structural conservation of the selectivity filter region. SsNMR experiments conducted at two different temperatures point to differential molecular dynamics of the channel. 相似文献
|