首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Coxiella burnetii, the etiologic agent of Q fever, is a highly infectious zoonotic bacterium. Genetic information about the strains of this worldwide distributed agent circulating on the African continent is limited. The aim of the present study was the genetic characterization of C. burnetii DNA samples detected in ticks collected from Ethiopian cattle and their comparison with other genotypes found previously in other parts of the world.

Methodology/Principal Findings

A total of 296 tick samples were screened by real-time PCR targeting the IS1111 region of C. burnetii genome and from the 32 positive samples, 8 cases with sufficient C. burnetii DNA load (Amblyomma cohaerens, n = 6; A. variegatum, n = 2) were characterized by multispacer sequence typing (MST) and multiple-locus variable-number tandem repeat analysis (MLVA). One novel sequence type (ST), the proposed ST52, was identified by MST. The MLVA-6 discriminated the proposed ST52 into two newly identified MLVA genotypes: type 24 or AH was detected in both Amblyomma species while type 26 or AI was found only in A. cohaerens.

Conclusions/Significance

Both the MST and MLVA genotypes of the present work are closely related to previously described genotypes found primarily in cattle samples from different parts of the globe. This finding is congruent with the source hosts of the analyzed Ethiopian ticks, as these were also collected from cattle. The present study provides genotype information of C. burnetii from this seldom studied East-African region as well as further evidence for the presumed host-specific adaptation of this agent.  相似文献   

2.

Background

Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. Epidemiologically, animals are considered reservoirs and humans incidental hosts.

Methodology/Principal Findings

We investigated Q fever in rural Senegal. Human samples (e.g., sera, saliva, breast milk, feces) were screened in the generally healthy population of two villages of the Sine-Saloum region. Ticks were collected in four regions. Seroprevalence was studied by immunofluorescence, and all other samples were tested by two qPCR systems for detection of C. burnetii. Positive samples were genotyped (multispacer typing) by amplification and sequencing of three spacers. Strains were isolated by cell culture. We found that the seroprevalence may be as high as 24.5% (59 of 238 studied) in Dielmo village. We identified spontaneous excretion of C. burnetii by humans through faeces and milk. Hard and soft ticks (8 species) were infected in 0–37.6%. We identified three genotypes of C. burnetii. The previously identified genotype 6 was the most common in ticks in all studied regions and the only one found in human samples. Three strains of genotype 6 of C. burnetii were also recovered from soft tick Ornithodoros sonrai. Two other genotypes found in ticks, 35 and 36, were identified for the first time.

Conclusions/Significance

Q fever should be considered a significant public health threat in Senegal. Humans, similar to other mammals, may continuously excrete C. burnetii.  相似文献   

3.
Coxiella burnetii, the causative agent of Q fever, is a zoonotic disease with potentially life-threatening complications in humans. Inhalation of low doses of Coxiella bacteria can result in infection of the host alveolar macrophage (AM). However, it is not known whether a subset of AMs within the heterogeneous population of macrophages in the infected lung is particularly susceptible to infection. We have found that lower doses of both phase I and phase II Nine Mile C. burnetii multiply and are less readily cleared from the lungs of mice compared to higher infectious doses. We have additionally identified AM resident within the lung prior to and shortly following infection, opposed to newly recruited monocytes entering the lung during infection, as being most susceptible to infection. These resident cells remain infected up to twelve days after the onset of infection, serving as a permissive niche for the maintenance of bacterial infection. A subset of infected resident AMs undergo a distinguishing phenotypic change during the progression of infection exhibiting an increase in surface integrin CD11b expression and continued expression of the surface integrin CD11c. The low rate of phase I and II Nine Mile C. burnetii growth in murine lungs may be a direct result of the limited size of the susceptible resident AM cell population.  相似文献   

4.
Coxiella burnetii is an obligate intracellular bacterial pathogen and the causative agent of Q fever. Chronic Q fever can produce debilitating fatigue and C. burnetii is considered a significant bioterror threat. C. burnetii occupies the monocyte phagolysosome and although prior work has explained features of the host-pathogen interaction, many aspects are still poorly understood. We have conducted a proteomic investigation of human Monomac I cells infected with the Nine Mile Phase II strain of C. burnetii and used the results as a framework for a systems biology model of the host response. Our principal methodology was multiplex differential 2D gel electrophoresis using ZDyes, a new generation of covalently linked fluorescent protein detection dyes under development at Montana State University. The 2D gel analysis facilitated the detection of changes in posttranslational modifications on intact proteins in response to infection. The systems model created from our data a framework for the design of experiments to seek a deeper understanding of the host-pathogen interactions.  相似文献   

5.
Abstract Those organisms considered to be obligate intracellular bacteria are interesting objects for genetic studies. Little is known about their mechanisms for natural genetic exchange. Many genes from the bacterium Coxiella burnetii , an obligate intraphagolysosomal pathogen, have therefore been cloned and characterized using the heterologous host Escherichia coli . Recently, use of electroporation methodology followed by long-term selection periods have provided initial data on genetic transformation in C. burnetii .  相似文献   

6.

Background

Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.

Methods/Principal Findings

We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.

Conclusions/Significance

C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.  相似文献   

7.
8.
A patient with endocarditis associated with chronic Coxiella burnetii infection is described in whom glomerulonephritis developed with granular deposits containing immunoglobulins and complement in the glomeruli. The serum was notable for the variety of circulating antibodies detected, which included antibodies directed against native DNA.  相似文献   

9.
10.
Transformation of Coxiella burnetii to ampicillin resistance.   总被引:1,自引:1,他引:0       下载免费PDF全文
A 5.8-kb chromosomal fragment isolated from Coxiella burnetii initiates plasmid replication in Escherichia coli and was characterized as an autonomous replication sequence, ars (M. Suhan, S.-Y. Chen, H.A. Thompson, T.A. Hoover, A. Hill, and J.C. Williams, J. Bacteriol. 176:5233-5243, 1994). In the present study, an ars replicon was used to transform C. burnetii to ampicillin resistance. Plasmid pSKO(+)1000 contained the C. burnetii ars sequence cloned into a ColE1-type replicon encoding beta-lactamase. pSKO(+)1000 was introduced into C. burnetii by electroporation. Ampicillin-resistant cells were selected, and survivors were examined for the transformed genotype by Southern hybridization. Transformants stably maintained the pSKO(+)1000 bla DNA sequence in the chromosome as a result of homologous recombination. The recombination event resulted in the duplication of the 5.8-kb ars sequence in the C. burnetii chromosome. The bla gene was also located in an episome. However, an ampicillin resistance plasmid lacking the C. burnetii ars sequence did not stably transform C. burnetii. A biological assay analyzing beta-lactamase activity of C. burnetii transformants during acid activation in vitro provided evidence for expression of the bla (beta-lactamase) gene.  相似文献   

11.
Coxiella burnetii has the potential to cause serious disease and is highly prevalent in the environment. Despite this, epidemiological data are sparse and isolate collections are typically small, rare, and difficult to share among laboratories as this pathogen is governed by select agent rules and fastidious to culture. With the advent of whole genome sequencing, some of this knowledge gap has been overcome by the development of genotyping schemes, however many of these methods are cumbersome and not readily transferable between institutions. As comparisons of the few existing collections can dramatically increase our knowledge of the evolution and phylogeography of the species, we aimed to facilitate such comparisons by extracting SNP signatures from past genotyping efforts and then incorporated these signatures into assays that quickly and easily define genotypes and phylogenetic groups. We found 91 polymorphisms (SNPs and indels) among multispacer sequence typing (MST) loci and designed 14 SNP-based assays that could be used to type samples based on previously established phylogenetic groups. These assays are rapid, inexpensive, real-time PCR assays whose results are unambiguous. Data from these assays allowed us to assign 43 previously untyped isolates to established genotypes and genomic groups. Furthermore, genotyping results based on assays from the signatures provided here are easily transferred between institutions, readily interpreted phylogenetically and simple to adapt to new genotyping technologies.  相似文献   

12.
13.
Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. In the present study, 131 candidate peptides were selected from the major immunodominant proteins (MIPs) of C. burnetii due to their high-affinity binding capacity for the MHC class II molecule H2 I-Ab based on bioinformatic analyses. Twenty-two of the candidate peptides with distinct MIP epitopes were well recognized by the IFN-γ recall responses of CD4+ T cells from mice immunized with parental proteins in an ELISPOT assay. In addition, 7 of the 22 peptides could efficiently induce CD4+ T cells from mice immunized with C. burnetii to rapidly proliferate and significantly increase IFN-γ production. Significantly higher levels of IL-2, IL-12p70, IFN-γ, and TNF-α were also detected in serum from mice immunized with a pool of the 7 peptides. Immunization with the pool of 7 peptides, but not the individual peptides, conferred a significant protection against C. burnetii infection in mice, suggesting that these Th1 peptides could work together to efficiently activate CD4+ T cells to produce the Th1-type immune response against C. burnetii infection. These observations could contribute to the rational design of molecular vaccines for Q fever.  相似文献   

14.
Antisera from rabbits immunized with formalin inactivated Coxiella burnetii isolates associated with either acute (Nine Mile, phase I or phase II) or chronic (Priscilla) Q fever showed reactivity to a C. burnetii macrophage infectivity potentiator protein (Cb-Mip) cloned in Escherichia coli. Further, antisera generated in BALB/c mice after infection with live Nine Mile phase I or Priscilla isolates also showed reactivity to Cb-Mip by immunoblot analysis. In addition, human serum from an individual with previous serological and clinical evidence of Q fever showed reactivity to Cb-Mip. This study indicates that Cb-Mip is immunogenic in both experimental and natural infections, and is the first report on the presence of antibodies to Mip/Mip-like proteins of intracellular bacteria in human sera. Cb-Mip may serve as a potential target antigen for developing recombinant vaccines or diagnostic assays for Q fever.  相似文献   

15.
Diagnosis of ongoing or past infection with Coxiella burnetii, the causative agent of Q fever, relies heavily on serology: the measurement of C. burnetii-specific antibodies, reflecting the host’s humoral immune response. However, cell-mediated immune responses play an important, probably even more relevant, role in infections caused by the intracellular C. burnetii bacterium. Recent studies have investigated interferon-gamma (IFN-γ) based assays, including a whole-blood IFN-γ production assay and a Coxiella enzyme-linked immunospot (Coxiella ELISPOT), as potential diagnostic tools for Q fever diagnosis. Both are in-house developed assays using stimulating antigens of different origin. The main objective of this study was to compare the test performance of the IFN-γ production assay and the Coxiella ELISPOT for detecting a cellular immune response to C. burnetii in Q fever patients, and to assess the correlation between both assays. To that end, both tests were performed in a well-defined patient group of chronic Q fever patients (n = 16) and a group of healthy seronegative individuals (n = 17). Among patients, both the Coxiella ELISPOT and the IFN-γ production assay detected positive response in 14/16. Among controls, none were positive in the Coxiella ELISPOT, whereas the IFN-γ production assay detected positive results in 1/17 and 3/17, when using Henzerling and Nine Mile as stimulating antigens, respectively. These results suggest the Coxiella ELISPOT has a somewhat higher specificity than the IFN-γ production assay when Nine Mile is used as antigen stimulus. The assays showed moderate correlation: the Spearman correlation coefficient r ranged between 0.37–0.60, depending on the antigens used. Further investigation of the diagnostic potential for C. burnetii infection of both assays is warranted.  相似文献   

16.
Coxiella burnetii was isolated from raw milk (36/214, 16.8%) and uterus swab samples (13/61, 21.3%) originating from dairy cattle with reproductive disorders, aborted bovine fetus samples (2/4, 50%), mammary gland samples (4/50, 8%) originating from healthy dairy cattle, and tick samples (4/15, 26.7%) originating from 2 pastures. Fifty-nine strains had various degrees of pathogenicity, high (8; 13.6%), moderate (28; 47.5%) and low (23; 39%), for guinea pigs. The results of isolation suggested a high prevalence of Coxiella infection in dairy cattle with reproductive problems in Japan. Twelve strains (7, 2 and 3 strains from cattle, ticks and humans, respectively) and the reference Nine Mile strain of phases I and II were propagated in both yolk sacs of embryonated hen eggs and Buffalo green monkey (BGM) cell cultures. Protein profiles of these strains were similar to those of the reference strain of phase I. Lipopolysaccharide (LPS) profiles of 12 strains were similar to those of the reference strain of phase I and different from those of the reference strain of phase II. The LPS profiles of 12 strains suggested that these strains are associated with an acute form of Q fever.  相似文献   

17.
For the first time the survival of Coxiella burnetii of five types in soils has been studied. The survival of C. burnetii has been found to depend on the content of organic substances in black earth, as well as soil temperature. The method for the prevention of an epidemic outbreak of Q fever directly under the natural conditions has been proposed.  相似文献   

18.
Coxiella burnetii is an intracellular bacterium that causes acute and chronic Q fever. This unique pathogen has been historically challenging to study due to obstacles in genetically manipulating the organism and the inability of small animal models to fully mimic human Q fever. Here, we review the current state of C. burnetii research, highlighting new approaches that allow the mechanistic study of infection in disease relevant settings.  相似文献   

19.
Inactivation of Coxiella burnetii by gamma irradiation   总被引:4,自引:0,他引:4  
The gamma radiation inactivation kinetics for Coxiella burnetii at -79 degrees C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0.64 to 1.2 kGy depending on the phase of the micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing 10(11) C. burnetii ml-1 was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes.  相似文献   

20.
Active transport of proline by Coxiella burnetii   总被引:10,自引:0,他引:10  
The obligate intracellular rickettsia, Coxiella burnetii, was shown to possess an energy dependent proline transport system which displayed a high degree of specificity and was highly dependent on pH. Transport was maximal at pH 3.0 to 4.5, a pH range approximately that of the host cell phagolysosome where the agent replicates. Transport was inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone and dinitrophenol, but not by sodium arsenite. In the presence of glutamate, a preferred energy source, proline uptake was enhanced more than two-fold. This enhancement of proline uptake was greatly decreased in the presence of sodium arsenite. The addition of glutamate decreased the apparent Km for proline transport from 45 microM to 15 microM, with the Vmax increasing from 3.6 pmol s-1 (mg dry wt)-1 to 4.8 pmol s-1 (mg dry wt)-1. Two proline analogues, furoic acid and azetidine-2-carboxylic acid, were effective inhibitors of proline transport. D-Proline, 4-hydroxyproline, glycine and proline amide inhibited transport minimally, while no inhibition was seen with succinate, pyruvate or glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号