首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid sequence stretches similar to the four most conserved segments of positive strand RNA viral RNA-dependent RNA polymerases have been identified in proteins of four dsRNA viruses belonging to three families, i.e. P2 protein of bacteriophage phi 6 (Cystoviridae), RNA 2 product of infectious bursa disease virus (Birnaviridae), lambda 3 protein of reovirus, and VP1 of bluetongue virus (Reoviridae). High statistical significance of the observed similarity was demonstrated, allowing identification of these proteins as likely candidates for RNA-dependent RNA polymerases. Based on these observations, and on the previously reported sequence similarity between the RNA polymerases of a yeast dsRNA virus and those of positive strand RNA viruses, a possible evolutionary relationship between the two virus classes is discussed.  相似文献   

2.
Template-dependent polynucleotide synthesis is catalyzed by enzymes whose core component includes a ubiquitous alphabeta palm subdomain comprising A, B and C sequence motifs crucial for catalysis. Due to its unique, universal conservation in all RNA viruses, the palm subdomain of RNA-dependent RNA polymerases (RdRps) is widely used for evolutionary and taxonomic inferences. We report here the results of elaborated computer-assisted analysis of newly sequenced replicases from Thosea asigna virus (TaV) and the closely related Euprosterna elaeasa virus (EeV), insect-specific ssRNA+ viruses, which revise a capsid-based classification of these viruses with tetraviruses, an Alphavirus-like family. The replicases of TaV and EeV do not have characteristic methyltransferase and helicase domains, and include a putative RdRp with a unique C-A-B motif arrangement in the palm subdomain that is also found in two dsRNA birnaviruses. This circular motif rearrangement is a result of migration of approximately 22 amino acid (aa) residues encompassing motif C between two internal positions, separated by approximately 110 aa, in a conserved region of approximately 550 aa. Protein modeling shows that the canonical palm subdomain architecture of poliovirus (ssRNA+) RdRp could accommodate the identified sequence permutation through changes in backbone connectivity of the major structural elements in three loop regions underlying the active site. This permutation transforms the ferredoxin-like beta1alphaAbeta2beta3alphaBbeta4 fold of the palm subdomain into the beta2beta3beta1alphaAalphaBbeta4 structure and brings beta-strands carrying two principal catalytic Asp residues into sequential proximity such that unique structural properties and, ultimately, unique functionality of the permuted RdRps may result. The permuted enzymes show unprecedented interclass sequence conservation between RdRps of true ssRNA+ and dsRNA viruses and form a minor, deeply separated cluster in the RdRp tree, implying that other, as yet unidentified, viruses may employ this type of RdRp. The structural diversification of the palm subdomain might be a major event in the evolution of template-dependent polynucleotide polymerases in the RNA-protein world.  相似文献   

3.
Thosea asigna virus (TaV), an insect virus belonging to the Permutatetraviridae family, has a positive-sense single-stranded RNA (ssRNA) genome with two overlapping open reading frames, encoding for the replicase and capsid proteins. The particular TaV replicase includes a structurally unique RNA-dependent RNA polymerase (RdRP) with a sequence permutation in the palm sub-domain, where the active site is anchored. This non-canonical arrangement of the RdRP palm is also found in double-stranded RNA viruses of the Birnaviridae family. Both virus families also share a conserved VPg sequence motif at the polymerase N-terminus which in birnaviruses appears to be used to covalently link a fraction of the replicase molecules to the 5’-end of the genomic segments. Birnavirus VPgs are presumed to be used as primers for replication initiation. Here we have solved the crystal structure of the TaV RdRP, the first non-canonical RdRP of a ssRNA virus, in its apo- form and bound to different substrates. The enzyme arranges as a stable dimer maintained by mutual interactions between the active site cleft of one molecule and the flexible N-terminal tail of the symmetrically related RdRP. The latter, partially mimicking the RNA template backbone, is involved in regulating the polymerization activity. As expected from previous sequence-based bioinformatics predictions, the overall architecture of the TaV enzyme shows important resemblances with birnavirus polymerases. In addition, structural comparisons and biochemical analyses reveal unexpected similarities between the TaV RdRP and those of Flaviviruses. In particular, a long loop protruding from the thumb domain towards the central enzyme cavity appears to act as a platform for de novo initiation of RNA replication. Our findings strongly suggest an unexpected evolutionary relationship between the RdRPs encoded by these distant ssRNA virus groups.  相似文献   

4.
5.
Qiu L  Li Y  Liu Y  Gao Y  Qi Y  Shen J 《Fungal biology》2010,114(5-6):507-513
Many cultivated mushroom strains, such as Pleurotus ostreatus TD300, displayed symptoms of degeneration. A spherical virus POSV and four dsRNA segments were extracted from mycelium of P. ostreatus TD300. POSV had a diameter of 23 nm and encapsidated a 2.5kb dsRNA segment with coat proteins whose molecular weights were 39 kDa and 30 kDa. Four dsRNA segments were 8.2 kb, 2.5 kb, 2.0 kb, and 1.1 kb in size, respectively. The 1.1 kb dsRNA segment often escaped detection. The cDNA and the amino acid sequences of the 8.2 kb dsRNA were homologous to those of RNA-dependent RNA polymerases (RDRP) of ssRNA oyster mushroom spherical virus (OMSV), and contained conserved motifs A to D which were almost identical to those in RDRP of OMSV. The cDNA and amino acid sequences of the 2.5 kb and 2.0 kb dsRNA segments were homologous to that of RDRP and capsid protein of dsRNA virus P. ostreatus virus 1 (PoV1), respectively. In particular, the amino acid sequence of 2.5 kb dsRNA segment had high identity with the conserved motifs A to C in RDRP of PoV1, a Partiviridae virus. After eliminating the viruses in P. ostreatus TD300, the symptoms of degeneration completely disappeared. The results reveal that P. ostreatus TD300 was at least infected by a particle virus POSV, and two naked viruses, one was a dsRNA virus with a 2.0 kb dsRNA segment, the other was an ssRNA virus whose replicating form of genome was an 8.2 kb dsRNA segment. Mycoviruses infection is a causative agent of mushroom strain degeneration.  相似文献   

6.
Presumptive phylogenetic trees of evolutionary conserved fragments of RNA-dependent RNA polymerases of 26 positive strand RNA viruses were generated using a simple clustering procedure or a novel approach based on the so-called maximal topologic similarity principle. The latter methodology involves a quantitative measure of the degree of correspondence between the topology of generated trees and structure of the initial distance matrix. The algorithm for tree construction based on the maximal topologic similarity principle does not include the assumption of evolutionary rate constancy, as opposed to the clustering procedure. Nevertheless, it is demonstrated that the trees generated by the two methods are topologically similar, indicating that no drastic change of evolutionary rate had occurred in evolution of the positive strand RNA virus RNA polymerases. This in turn suggests that RNA-dependent RNA polymerases (or at least their evolutionary conserved core domains used for construction of the phylogenetic trees) are principally functionally equivalent in all positive strand RNA viruses.  相似文献   

7.
8.
9.
10.
Tomato bushy stunt virus (TBSV), a tombusvirus with a nonsegmented, plus-stranded RNA genome, codes for two essential replicase proteins. The sequence of one of the replicase proteins, namely p33, overlaps with the N-terminal domain of p92, which contains the signature motifs of RNA-dependent RNA polymerases (RdRps) in its nonoverlapping C-terminal portion. In this work, we demonstrate that both replicase proteins bind to RNA in vitro based on gel mobility shift and surface plasmon resonance measurements. We also show evidence that the binding of p33 to single-stranded RNA (ssRNA) is stronger than binding to double-stranded RNA (dsRNA), ssDNA, or dsDNA in vitro. Competition experiments with ssRNA revealed that p33 binds to a TBSV-derived sequence with higher affinity than to other nonviral ssRNA sequences. Additional studies revealed that p33 could bind to RNA in a cooperative manner. Using deletion derivatives of the Escherichia coli-expressed recombinant proteins in gel mobility shift and Northwestern assays, we demonstrate that p33 and the overlapping domain of p92, based on its sequence identity with p33, contain an arginine- and proline-rich RNA-binding motif (termed RPR, which has the sequence RPRRRP). This motif is highly conserved among tombusviruses and related carmoviruses, and it is similar to the arginine-rich motif present in the Tat trans-activator protein of human immunodeficiency virus type 1. We also find that the nonoverlapping C-terminal domain of p92 contains additional RNA-binding regions. Interestingly, the location of one of the RNA-binding domains in p92 is similar to the RNA-binding domain of the NS5B RdRp protein of hepatitis C virus.  相似文献   

11.
The genomes of two positive-strand RNA viruses have recently been cloned from the serum of a GB agent-infected tamarin by using representational difference analysis. The two agent, GB viruses A and B (GBV-A and GBV-B, respectively), have genomes of 9,493 and 9,143 nucleotides, respectively, and single large open reading frames that encode potential polyprotein precursors of 2,972 and 2,864 amino acids, respectively. The genomes of these agents are organized much like those of other pestiviruses and flaviviruses, with genes predicted to encode structural and nonstructural proteins located at the 5' and 3' ends, respectively. Amino acid sequence alignments and subsequent phylogenetic analysis of the RNA-dependent RNA polymerases (RdRps) of GBV-A and GBV-B show that they possess conserved sequence motifs associated with supergroup II RNA polymerases of positive-strand RNA viruses. On the basis of similar analyses, the GBV-A- and GBV-B-encoded helicases show significant identity with the supergroup II helicases of positive-strand RNA viruses. Within the supergroup II RNA polymerases and helicases, GBV-A and GBV-B are most closely related to the hepatitis C virus group. Across their entire open reading frames, the GB agents exhibit 27% amino sequence identity to each other, approximately 28% identity to hepatitis C virus type 1, and approximately 20% identity to either bovine viral diarrhea virus or yellow fever virus. The degree of sequence divergence between GBV-A and GBV-B and other Flaviviridae members demonstrates that the GB agents are representatives of two new genera within the Flaviviridae family.  相似文献   

12.
13.
14.
Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs) are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs). Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements.  相似文献   

15.
The structure of the RNA-dependent RNA polymerase (RdRP) from the rabbit hemorrhagic disease virus has been determined by x-ray crystallography to a 2.5-A resolution. The overall structure resembles a "right hand," as seen before in other polymerases, including the RdRPs of polio virus and hepatitis C virus. Two copies of the polymerase are present in the asymmetric unit of the crystal, revealing active and inactive conformations within the same crystal form. The fingers and palm domains form a relatively rigid unit, but the thumb domain can adopt either "closed" or "open" conformations differing by a rigid body rotation of approximately 8 degrees. Metal ions bind at different positions in the two conformations and suggest how structural changes may be important to enzymatic function in RdRPs. Comparisons between the structures of the alternate conformational states of rabbit hemorrhagic disease virus RdRP and the structures of RdRPs from hepatitis C virus and polio virus suggest novel structure-function relationships in this medically important class of enzymes.  相似文献   

16.
The sequences of 50 RNA-dependent RNA polymerases (RDRPs) from 43 positive strand and 7 double strand RNA (dsRNA) viruses have been compared. The alignment permitted calculation of distances among the 50 viruses and a resultant dendrogram based on every amino acid, rather than just those amino acids in the conserved motifs. Remarkably, a large subgroup of these viruses, including vertebrate, plant, and insect viruses, forms a single cluster whose only common characteristic is exploitation of insect hosts or vectors. This similarity may be due to molecular constraints associated with a present and/or past ability to infect insects and/or to common descent from insect viruses. If common descent is important, as it appears to be, all the positive strand RNA viruses of eucaryotes except for the picornaviruses may have evolved from an ancestral dsRNA virus. Viral RDRPs appear to be inherited as modules rather than as portions of single RNA segments, implying that RNA recombination has played an important role in their dissemination.  相似文献   

17.
RNA-dependent ATPase and helicase activities have been identified associated with the purified VP6 protein of bluetongue virus, a member of the Orbivirus genus of double-stranded RNA (dsRNA; Reoviridae family) viruses. In addition, the protein has an ATP binding activity. RNA unwinding of duplexes occurred with both 3' and 5' overhang templates, as well as with blunt-ended dsRNA, an activity not previously identified in other viral helicases. Although little sequence similarity to other helicases was detected, certain similarities to motifs commonly attributed to such proteins were identified.  相似文献   

18.
Probably one of the first proteinaceous enzymes was an RNA-dependent RNA polymerase (RDRP). Although there are several conserved motifs present in the RDRPs of most positive and double-stranded RNA (dsRNA) viruses, the RDRPs of the dsRNA viruses show no detectable sequence similarity outside the conserved motifs. There is now, however, a group of dsRNA viruses of lower eucaryotes whose RDRPs are detectably similar. The origin of this sequence similarity appears to be common descent from one or more noninfectious viruses of a progenitor cell, an origin that predates the differentiation of protozoans and fungi. The cause of this preservation of sequence appears to be constraints placed on the RDRP by the life-style of these viruses--the maintenance of a stable, persistent, noninfectious state.  相似文献   

19.
The Pol region of the Gag-Pol fusion protein of the L-A double-stranded (ds) RNA virus of Saccharomyces cerevisiae has (i) a domain essential for packaging viral positive strands, (ii) consensus amino acid sequence patterns typical of RNA-dependent RNA polymerases, and (iii) two single-stranded RNA binding domains. We describe here a third single-stranded RNA binding domain (Pol residues 374 to 432), which is unique in being cryptic. Its activity is revealed only after deletion of an inhibitory region C terminal to the binding domain itself. This cryptic RNA binding domain is necessary for propagation of M1 satellite dsRNA, but it is not necessary for viral particle assembly or for packaging of viral positive-strand single-stranded RNA. The cryptic RNA binding domain includes a sequence pattern common among positive-strand single-stranded RNA and dsRNA viral RNA-dependent RNA polymerases, suggesting that it has a role in RNA polymerase activity.  相似文献   

20.
A comparative analysis is presented of 24 known amino acid sequences of RNA-dependent RNA polymerases of positive strand RNA viruses infecting animals, plants and bacteria. Using a newly proposed methodology of group alignment for weakly similar sequences, evolutionary conserved fragments of all these proteins were unambiguously aligned. A unique pattern (consensus) of 7 invariant amino acid residues was revealed which is absent from the sequences of other RNA and DNA polymerases and is thought to unequivocally identify the RNA-dependent RNA polymerases of positive strand RNA viruses. Based on the obtained alignment a tentative phylogenetic tree of viral RNA polymerases was constructed for the first time. The RNA-dependent RNA polymerases of positive strand RNA viruses are concluded to comprise a distinct family of evolutionary related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号