首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF) is a common cause of disease acceleration in IPF and has a major impact on mortality. The role of macrophage activation in AE of IPF has never been addressed before.

Methods

We evaluated BAL cell cytokine profiles and BAL differential cell counts in 71 IPF patients w/wo AE and in 20 healthy volunteers. Twelve patients suffered from AE at initial diagnosis while sixteen patients developed AE in the 24 months of follow-up. The levels of IL-1ra, CCL2, CCL17, CCL18, CCL22, TNF-α, IL-1β, CXCL1 and IL-8 spontaneously produced by BAL-cells were analysed by ELISA.

Results

In patients with AE, the percentage of BAL neutrophils was significantly increased compared to stable patients. We found an increase in the production rate of the pro-inflammatory cytokines CXCL1 and IL-8 combined with an increase in all tested M2 cytokines by BAL-cells. An increase in CCL18 levels and neutrophil counts during AE was observed in BAL cells from patients from whom serial lavages were obtained. Furthermore, high baseline levels of CCL18 production by BAL cells were significantly predictive for the development of future AE.

Conclusions

BAL cell cytokine production levels at acute exacerbation show up-regulation of pro-inflammatory as well as anti-inflammatory/ M2 cytokines. Our data suggest that AE in IPF is not an incidental event but rather driven by cellular mechanisms including M2 macrophage activation.  相似文献   

2.

Background

Idiopathic pulmonary fibrosis (IPF), a devastating lung disorder of unknown aetiology, and chronic hypersensitivity pneumonitis (HP), a disease provoked by an immunopathologic reaction to inhaled antigens, are two common interstitial lung diseases with uncertain pathogenic mechanisms. Previously, we have shown in other upper and lower airway diseases that immunoglobulin free light chains (FLCs) are increased and may be involved in initiating a local inflammation. In this study we explored if such a mechanism may also apply to HP and IPF.

Methods

In this study we examined the presence of FLC in serum and BAL fluid from 21 IPF and 22 HP patients and controls. IgG, IgE and tryptase concentrations were measured in BAL fluid only. The presence of FLCs, plasma cells, B cells and mast cells in lung tissue of 3 HP and 3 IPF patients and 1 control was analyzed using immunohistochemistry.

Results

FLC concentrations in serum and BAL fluid were increased in IPF and HP patients as compared to control subjects. IgG concentrations were only increased in HP patients, whereas IgE concentrations were comparable to controls in both patient groups. FLC-positive cells, B cells, plasma cells, and large numbers of activated mast cells were all detected in the lungs of HP and IPF patients, not in control lung.

Conclusion

These results show that FLC concentrations are increased in serum and BAL fluid of IPF and HP patients and that FLCs are present within affected lung tissue. This suggests that FLCs may be involved in mediating pathology in both diseases.  相似文献   

3.

Background

Interleukin-8 (IL-8) is a potent chemo-attractant cytokine responsible for neutrophil infiltration in lungs with idiopathic pulmonary fibrosis (IPF). The IL-8 protein and mRNA expression are increased in the lung with IPF. We evaluated the effect of single nucleotide polymorphisms (SNPs) of the IL-8 gene on the risk of IPF.

Methods

One promoter (rs4073T>A) and two intronic SNPs (rs2227307T>G and rs2227306C>T) of the IL-8 genes were genotyped in 237 subjects with IPF and 456 normal controls. Logistic regression analysis was applied to evaluate the association of these SNPs with IPF. IL-8 in BAL fluids was measured using a quantitative sandwich enzyme immunoassay, and promoter activity was assessed using the luciferase reporter assay.

Results

The minor allele frequencies of rs4073T>A and rs2227307T>G were significantly lower in the 162 subjects with surgical biopsy-proven IPF and 75 subjects with clinical IPF compared with normal controls in the recessive model (OR = 0.46 and 0.48, p = 0.006 and 0.007, respectively). The IL-8 protein concentration in BAL fluids significantly increased in 24 subjects with IPF compared with 14 controls (p = 0.009). Nine IPF subjects homozygous for the rs4073 T>A common allele exhibited higher levels of the IL-8 protein compared with six subjects homozygous for the minor allele (p = 0.024). The luciferase activity of the rs4073T>A common allele was significantly higher than that of the rs4073T>A minor allele (p = 0.002).

Conclusion

The common allele of a promoter SNP, rs4073T>A, may increase susceptibility to the development of IPF via up-regulation of IL-8.  相似文献   

4.

Background

Tick-borne encephalitis (TBE), caused by tick-borne encephalitis virus (TBEV), is an infectious disease involving the central nervous system (CNS). The pathogenesis of CNS injury has not been clearly demonstrated. Matrix metalloproteinase-9 (MMP-9) and some cytokines, such as interleukin 6 (IL-6), may play important roles in the disruption of the blood-brain barrier (BBB) and the pathogenesis of TBE.

Methods

72 cerebrospinal fluid (CSF) samples were collected from TBE patients in north eastern China. IgG levels in CSF and serum were compared and MMP-9 and IL-6 levels were evaluated by ELISA. The correlation between the elevated MMP-9 levels and IgG extravasation, disease severity, and neuroinflammation was analyzed.

Results

Increased concentration of MMP-9 was detected in some of the CSF samples, and the elevation was found to be closely related to CSF TBEV IgG extravasation and enhancement of IL-6 expression. Moreover, elevated levels of MMP-9 were found to be correlated with IL-6 enhancement. Four of the 72 patients, the ones who died, presented with high CSF MMP-9 levels.

Conclusions

In TBE patients, elevated CSF MMP-9 levels were associated with brain inflammatory reaction, disruption of the blood-brain barrier, and disease severity.  相似文献   

5.

Objective

Interleukin-8 (IL-8, CXCL8) plays important roles in immune responses at mucosal sites including in the lower genital tract. Since several types of bacteria produce proteases that cleave IL-8 and many types of bacteria can be present in lower genital tract microbiota, we assessed genital fluids for IL-8 cleavage/alteration.

Study Design

Genital fluids collected by lavage from 200 women (23 HIV-seronegative and 177 HIV-seropositive) were tested for IL-8 cleavage/alteration by ELISA.

Results

IL-8 cleaving/altering activity was observed in fluids from both HIV-positive (28%) and HIV-negative women (35%). There was no clear relationship between the activity and the types of bacteria present in the lower genital tract as determined by high-throughput sequencing of the 16S rRNA gene. Protease inhibitors specific for matrix metalloproteinases (MMPs) reduced the activity and a multiplex assay that detects both inactive and active MMPs showed the presence of multiple MMPs, including MMP-1, -3, -7, -8, -9, -10 and -12 in genital secretions from many of the women. The IL-8-cleaving/altering activity significantly correlated with active MMP-9 as well as with cleavage of a substrate that is acted on by several active MMPs.

Conclusions

These studies show that multiple MMPs are present in the genital tract of women and strongly suggest that MMP-9 in genital secretions can cleave IL-8 at this mucosal site. These studies suggest that MMP-mediated cleavage of IL-8 can modulate inflammatory responses in the lower genital tract.  相似文献   

6.

Background

A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.

Methodology/Principal Findings

The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.

Conclusions/Significance

CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.  相似文献   

7.

Background

Matrix metalloproteinases (MMPs) may have pro and antifibrotic roles within the lungs, due to its ability to modulate collagen turnover and immune mediators. MMP-8 is a collagenase that also cleaves a number of cytokines and chemokines.

Methodology and Principal Findings

To evaluate its relevance in lung fibrosis, wildtype and Mmp8−/− mice were treated with either intratracheal bleomycin or saline, and lungs were harvested at different time points. Fibrosis, collagen, collagenases, gelatinases, TGFβ and IL-10 were measured in lung tissue. Mmp8−/− mice developed less fibrosis than their wildtype counterparts. This was related to an increase in lung inflammatory cells, MMP-9 and IL-10 levels in these mutant animals. In vitro experiments showed that MMP-8 cleaves murine and human IL-10, and tissue from knockout animals showed decreased IL-10 processing. Additionally, lung fibroblasts from these mice were cultured in the presence of bleomycin and collagen, IL-10 and STAT3 activation (downstream signal in response to IL-10) measured by western blotting. In cell cultures, bleomycin increased collagen synthesis only in wildtype mice. Fibroblasts from knockout mice did not show increased collagen synthesis, but increased levels of unprocessed IL-10 and STAT3 phosphorylation. Blockade of IL-10 reverted this phenotype, increasing collagen in cultures.

Conclusions

According to these results, we conclude that the absence of MMP-8 has an antifibrotic effect by increasing IL-10 and propose that this metalloprotease could be a relevant modulator of IL-10 metabolism in vivo.  相似文献   

8.

Background

Idiopathic pulmonary fibrosis (IPF) is a common, progressive and invariably lethal interstitial lung disease with no effective therapy. We hypothesised that KCa3.1 K+ channel-dependent cell processes contribute to IPF pathophysiology.

Methods

KCa3.1 expression in primary human lung myofibroblasts was examined using RT-PCR, western blot, immunofluorescence and patch-clamp electrophysiology. The role of KCa3.1 channels in myofibroblast proliferation, wound healing, collagen secretion and contraction was examined using two specific and distinct KCa3.1 blockers (TRAM-34 and ICA-17043 [Senicapoc]).

Results

Both healthy non fibrotic control and IPF-derived human lung myofibroblasts expressed KCa3.1 channel mRNA and protein. KCa3.1 ion currents were elicited more frequently and were larger in IPF-derived myofibroblasts compared to controls. KCa3.1 currents were increased in myofibroblasts by TGFβ1 and basic FGF. KCa3.1 was expressed strongly in IPF tissue. KCa3.1 pharmacological blockade attenuated human myofibroblast proliferation, wound healing, collagen secretion and contractility in vitro, and this was associated with inhibition of TGFβ1-dependent increases in intracellular free Ca2+.

Conclusions

KCa3.1 activity promotes pro-fibrotic human lung myofibroblast function. Blocking KCa3.1 may offer a novel approach to treating IPF with the potential for rapid translation to the clinic.  相似文献   

9.

Background

Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are disorders of the lung parenchyma. They share the common denominators of a progressive nature and poor prognosis. The goal was to use non-biased proteomics to discover new markers for these diseases.

Methods

Proteomics of fibrotic vs. control lung tissue suggested decreased levels of several spots in the lung specimens of IPF patients, which were identified as Hemoglobin (Hb) α and β monomers and Hbα complexes. The Hbα and β monomers and complexes were investigated in more detail in normal lung and lung specimens of patients with IPF and COPD by immunohistochemistry, morphometry and mass spectrometry (MS).

Results

Both Hb monomers, in normal lung, were expressed especially in the alveolar epithelium. Levels of Hbα and β monomers and complexes were reduced/lost in IPF but not in the COPD lungs when compared to control lung. MS-analyses revealed Hbα modification at cysteine105 (Cysα105), preventing formation of the Hbα complexes in the IPF lungs. Hbα and Hbβ were expressed as complexes and monomers in the lung tissues, but were secreted into the bronchoalveolar lavage fluid and/or induced sputum supernatants as complexes corresponding to the molecular weight of the Hb tetramer.

Conclusions

The abundant expression of the oxygen carrier molecule Hb in the normal lung epithelium and its decline in IPF lung are new findings. The loss of Hb complex formation in IPF warrants further studies and may be considered as a disease-specific modification.  相似文献   

10.

Background

Idiopathic pulmonary fibrosis (IPF) has been associated with abnormal vascular remodeling. Bone marrow derived endothelial progenitor cells (EPCs) are considered to possess lung tissue repair and vascular remodeling properties.

Objectives

The study aimed to assess early EPCs levels and EPCs endogenous vascular endothelial growth factor (VEGF) expression in IPF. In order to examine alterations in the mobilization of EPCs from the bone marrow we measured plasma VEGF.

Main Results

Twenty-three patients with IPF and fifteen healthy subjects were included. The number of early EPCs colonies was markedly reduced in IPF patients vs controls (6.00±6.49 vs 49.68±16.73, respectively, p<0.001). EPCs were further decreased in patients presenting systolic pulmonary arterial pressure (sPAP)≥35 mmHg. The number of colonies per well correlated negatively with P(A-a)O2 (r =  −0.750, p<0.001). Additionally, VEGF mRNA levels were significantly increased in IPF patients. There were no differences observed in VEGF plasma levels in IPF patients when compared to controls.

Conclusions

The current data suggest that inadequate levels of early EPCs may potentially contribute to suppressed repair and recovery of the damaged pulmonary endothelium and thereby may drive the sequence of events in profibrogenic direction. Increased VEGFmRNA levels in the clinical context of IPF may represent a compensatory mechanism to overcome reduced EPCs levels.  相似文献   

11.

Background

Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients.

Methods

We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization.

Results

BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients.

Conclusion

We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.  相似文献   

12.

Background

Idiopathic Pulmonary Fibrosis (IPF) is characterized by profound changes in the lung phenotype including excessive extracellular matrix deposition, myofibroblast foci, alveolar epithelial cell hyperplasia and extensive remodeling. The role of epigenetic changes in determining the lung phenotype in IPF is unknown. In this study we determine whether IPF lungs exhibit an altered global methylation profile.

Methodology/Principal Findings

Immunoprecipitated methylated DNA from 12 IPF lungs, 10 lung adenocarcinomas and 10 normal histology lungs was hybridized to Agilent human CpG Islands Microarrays and data analysis was performed using BRB-Array Tools and DAVID Bioinformatics Resources software packages. Array results were validated using the EpiTYPER MassARRAY platform for 3 CpG islands. 625 CpG islands were differentially methylated between IPF and control lungs with an estimated False Discovery Rate less than 5%. The genes associated with the differentially methylated CpG islands are involved in regulation of apoptosis, morphogenesis and cellular biosynthetic processes. The expression of three genes (STK17B, STK3 and HIST1H2AH) with hypomethylated promoters was increased in IPF lungs. Comparison of IPF methylation patterns to lung cancer or control samples, revealed that IPF lungs display an intermediate methylation profile, partly similar to lung cancer and partly similar to control with 402 differentially methylated CpG islands overlapping between IPF and cancer. Despite their similarity to cancer, IPF lungs did not exhibit hypomethylation of long interspersed nuclear element 1 (LINE-1) retrotransposon while lung cancer samples did, suggesting that the global hypomethylation observed in cancer was not typical of IPF.

Conclusions/Significance

Our results provide evidence that epigenetic changes in IPF are widespread and potentially important. The partial similarity to cancer may signify similar pathogenetic mechanisms while the differences constitute IPF or cancer specific changes. Elucidating the role of these specific changes will potentially allow better understanding of the pathogenesis of IPF.  相似文献   

13.

Background

Adenosine is generated in response to cellular stress and damage and is elevated in the lungs of patients with chronic lung disease. Adenosine signaling through its cell surface receptors serves as an amplifier of chronic lung disorders, suggesting adenosine-based therapeutics may be beneficial in the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Previous studies in mouse models of chronic lung disease demonstrate that the key components of adenosine metabolism and signaling are altered. Changes include an up-regulation of CD73, the major enzyme of adenosine production and down-regulation of adenosine deaminase (ADA), the major enzyme for adenosine metabolism. In addition, adenosine receptors are elevated.

Methodology/Principal Findings

The focus of this study was to utilize tissues from patients with COPD or IPF to examine whether changes in purinergic metabolism and signaling occur in human disease. Results demonstrate that the levels of CD73 and A2BR are elevated in surgical lung biopsies from severe COPD and IPF patients. Immunolocalization assays revealed abundant expression of CD73 and the A2BR in alternatively activated macrophages in both COPD and IPF samples. In addition, mediators that are regulated by the A2BR, such as IL-6, IL-8 and osteopontin were elevated in these samples and activation of the A2BR on cells isolated from the airways of COPD and IPF patients was shown to directly induce the production of these mediators.

Conclusions/Significance

These findings suggest that components of adenosine metabolism and signaling are altered in a manner that promotes adenosine production and signaling in the lungs of patients with COPD and IPF, and provide proof of concept information that these disorders may benefit from adenosine-based therapeutics. Furthermore, this study provides the first evidence that A2BR signaling can promote the production of inflammatory and fibrotic mediators in patients with these disorders.  相似文献   

14.
15.

Background

The enzyme in matrix metalloproteinase (MMP)-9 has been suggested to be an important determinant of plaque degradation. While several studies have shown elevated levels in patients with coronary heart disease, results in prospective population based studies evaluating MMP-9 in relation to first time coronary events have been inconclusive. As of today, there are four published studies which have measured MMP-9 in serum and none using plasma. Measures of MMP-9 in serum have been suggested to have more flaws than measures in plasma.

Aim

To investigate the independent association between plasma levels of MMP-9 and first-time incidence of coronary events in an 8-year follow-up.

Material and Methods

428 men and 438 women, aged 45–69 years, free of previous coronary events and stroke at baseline, were followed-up. Adjustments were made for sex, age, socioeconomic position, behavioral and cardiovascular risk factors, chronic disease at baseline, depressive symptoms, interleukin-6 and C-reactive protein.

Results

53 events were identified during a risk-time of 6 607 person years. Hazard ratio (HR) for MMP-9 after adjustment for all covariates were HR = 1.44 (1.03 to 2.02, p = 0.033). Overall, the effect of adjustments for other cardiovascular risk factors was low.

Conclusion

Levels of plasma MMP-9 are independently associated with risk of first-time CHD events, regardless of adjustments. These results are in contrast to previous prospective population-based studies based on MMP-9 in serum. It is essential that more studies look at MMP-9 levels in plasma to further evaluate the association with first coronary events.  相似文献   

16.

Introduction

Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood.

Methods

BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue.

Results

Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF.

Conclusions

The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation.  相似文献   

17.
18.

Objective

Vasopressin (AVP) secretion during an osmotic challenge is frequently altered in the immediate post-acute phase of septic shock. We sought to determine if this response is still altered in patients recovering from septic shock.

Design

Prospective interventional study

Setting

Intensive care unit (ICU) at Raymond Poincaré and Etampes Hospitals.

Patients

Normonatremic patients at least 5 days post discontinuation of catecholamines given for a septic shock.

Intervention

Osmotic challenge involved infusing 500 mL of hypertonic saline solution (with cumulative amount of sodium not exceeding 24 g) over 120 minutes.

Measurements and main results

Plasma AVP levels were measured 15 minutes before the infusion and then every 30 minutes for two hours. Non-responders were defined as those with a slope of the relation between AVP and plasma sodium levels less than < 0.5 ng/mEq. Among the 30 included patients, 18 (60%) were non-responders. Blood pressure and plasma sodium and brain natriuretic peptide levels were similar in both responders and non-responders during the course of the test. Critical illness severity, hemodynamic alteration, electrolyte disturbances, treatment and outcome did not differ between the two groups. Responders had more severe gas exchange abnormality. Thirst perception was significantly diminished in non-responders. The osmotic challenge was repeated in 4 non-responders several months after discharge and the abnormal response persisted.

Conclusion

More than half of patients recovering from septic shock have an alteration of osmoregulation characterised by a dramatic decrease in vasopressin secretion and thirst perception during osmotic challenge. The mechanisms of this alteration but also of the relationship between haematosis and normal response remain to be elucidated.  相似文献   

19.

Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a progressive, incurable fibrotic interstitial lung disease with a prognosis worse than many cancers. Its pathogenesis is poorly understood. Activated platelets can release pro-fibrotic mediators that have the potential to contribute to lung fibrosis. We determine platelet reactivity in subjects with IPF compared to age-matched controls.

Methods

Whole blood flow cytometry was used to measure platelet-monocyte aggregate formation, platelet P-selectin expression and platelet fibrinogen binding at basal levels and following stimulation with platelet agonists. A plasma swap approach was used to assess the effect of IPF plasma on control platelets.

Results

Subjects with IPF showed greater platelet reactivity than controls. Platelet P-selectin expression was significantly greater in IPF patients than controls following stimulation with 0.1 µM ADP (1.9% positive ±0.5 (mean ± SEM) versus 0.7%±0.1; p = 0.03), 1 µM ADP (9.8%±1.3 versus 3.3%±0.8; p<0.01) and 10 µM ADP (41.3%±4.2 versus 22.5%±2.6; p<0.01). Platelet fibrinogen binding was also increased, and platelet activation resulted in increased platelet-monocyte aggregate formation in IPF patients. Re-suspension of control platelets in plasma taken from subjects with IPF resulted in increased platelet activation compared to control plasma.

Conclusions

IPF patients exhibit increased platelet reactivity compared with controls. This hyperactivity may result from the plasma environment since control platelets exhibit increased activation when exposed to IPF plasma.  相似文献   

20.

Aims

Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients.

Methods

AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D) and constipation-predominant (IBS-C) patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls.

Results

Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C.

Conclusion

IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号