首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Translational oncology》2022,15(12):101228
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.  相似文献   

2.
目的:建立miR-106b转基因小鼠模型,探讨其在阿尔茨海默病(Alzheimer’s disease, AD)发病中的作用。方法:构建miR-106b表达载体,显微注射法建立miR-106b转基因小鼠。PCR鉴定转基因小鼠的基因型,real time RT-PCR检测miR-106b转基因小鼠脑组织中miR-106b的表达情况,Western blot检测miR-106b转基因小鼠脑组织中TGFBR2蛋白的表达。结果:构建了高表达miR-106b转基因小鼠;与对照相比,miR-106b转基因小鼠脑组织中TGFBR2蛋白的表达升高。结论:miR-106b转基因小鼠的建立为研究该microRNA在AD发病中的作用提供了工具。  相似文献   

3.
4.
Tumor cells switch from an epithelial to a mesenchymal-like phenotype, which represents a key hallmark of human cancer metastasis, including gallbladder cancer (GBC). A large set of microRNAs (miRNAs/miRs) have been studied to elucidate their functions in initiating or inhibiting this phenotypic switching in GBC cells. In this paper, we attempted to identify the expression pattern of the miR-214/−3120 cluster and its mode of action in the context of GBC, with a specific focus being placed on their effects on EMT and autophagy in GBC cells. Human GBC cells GBC-SD were assayed for their migration, invasion, and autophagy using the Transwell chamber system, MDC staining, and transmission electron microscopy. The tumorigenicity and metastatic behavior of GBC-SD cells were tested in nude mice. The expression of EMT- and autophagy-specific markers (E-cadherin, N-cadherin, vimentin, ATG5, LC3II/LC3I, and Beclin1) was analyzed in cultured GBC-SD cells and in human GBC-SD xenografts. The E2F3 luciferase reporter activity in the presence of miR-214/−3120 was evaluated by a dual luciferase assay. The miR-214/−3120 was downregulated in GBC. Exogenous miR-214/−3120 inhibited the phenotypic switching of GBC cells from epithelial to mesenchymal, prevented autophagy, and suppressed the tumorigenicity and metastatic behavior of GBC-SD cells in vitro and in vivo. E2F3 was demonstrated to be the target gene of miR-214/−3120, and its knockdown in part mimicked the effect of miR-214/−3120 on the EMT, autophagy, tumorigenicity, and metastatic behavior of GBC-SD cells. These results demonstrated that the miR-214/−3120 cluster blocks the process of EMT and autophagy to limit GBC metastasis by repressing E2F3 expression.  相似文献   

5.
6.
7.
8.
MicroRNAs(miRNAs)基因芯片结果显示,携带有MYH7基因突变的家族性肥厚性心肌病病人的心脏组织以及小鼠心力衰竭模型中miR-30b表达下调,提示miR-30b可能在心脏疾病发生发展过程中发挥了重要功能.为研究miR-30b在心脏组织中的功能,本实验室首先建立了在心肌细胞特异性启动子琢肌球蛋白重链(琢-MHC,5.5 kb)控制下过表达miR-30b的转基因小鼠.通过qRT-PCR方法,证实miR-30b表达水平在转基因小鼠心脏组织中明显升高(P0.05).miR-30b转基因小鼠心重/体重比和左心室/体重比无明显变化,心肌组织结构未见异常.目前,关于miR-30b在心肌梗死中的功能及相关机制未见报道.本文通过冠状动脉左前降支结扎法建立心肌缺血再灌注(ischemia-reperfusion,I/R)模型,以假手术组作为对照组.生化检测结果及TTC-Evans blue双染结果显示,I/R损伤后,与野生型小鼠相比,转基因小鼠LDH、CK-MB和cTn玉浓度显著减小(P0.05),并且心肌梗死面积明显减少(P0.05).超声心动图检测结果显示,转基因小鼠心功能显著改善.由此得出结论:miR-30b对缺血再灌注损伤的心肌具有保护作用,该研究成果可能为预防和治疗心肌梗死提供新策略.  相似文献   

9.
Cholangiocarcinoma (CC) is a rare malignancy of the extrahepatic or intrahepatic biliary tract with an outstanding poor prognosis. Non-surgical therapeutic regimens result in minimally improved survival of CC patients. Global genomic analyses identified a few recurrently mutated genes, some of them in genes involved in epigenetic patterning. In a previous study, we demonstrated global DNA methylation changes in CC, indicating major contribution of epigenetic alterations to cholangiocarcinogenesis. Here, we aimed at the identification and characterization of CC-related, differentially methylated regions (DMRs) in potential microRNA promoters and of genes targeted by identified microRNAs. Twenty-seven hypermethylated and 13 hypomethylated potential promoter regions of microRNAs, known to be associated with cancer-related pathways like Wnt, ErbB, and PI3K-Akt signaling, were identified. Selected DMRs were confirmed in 2 independent patient cohorts. Inverse correlation between promoter methylation and expression suggested miR-129-2 and members of the miR-200 family (miR-200a, miR-200b, and miR-429) as novel tumor suppressors and oncomiRs, respectively, in CC. Tumor suppressor genes deleted in liver cancer 1 (DLC1), F-box/WD-repeat-containing protein 7 (FBXW7), and cadherin-6 (CDH6) were identified as presumed targets in CC. Tissue microarrays of a representative and well-characterized cohort of biliary tract cancers (n=212) displayed stepwise downregulation of CDH6 and association with poor patient outcome. Ectopic expression of CDH6 on the other hand, delayed growth in the CC cell lines EGI-1 and TFK-1, together suggesting a tumor suppressive function of CDH6. Our work represents a valuable repository for the study of epigenetically altered miRNAs in cholangiocarcinogenesis and novel putative, CC-related tumor suppressive miRNAs and oncomiRs.  相似文献   

10.
11.
12.
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR‐200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR‐200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real‐time polymerase chain reaction revealed that the expression of miR‐200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit‐8 assay revealed that cell viability was reduced by overexpressing miR‐200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR‐200b/c/429 overexpression. Sphere‐forming and western blot assays demonstrated that miR‐200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor‐κB (NF‐κB) pathway was confirmed to be associated with Wilms' tumor progression; miR‐200b/c/429 overexpression inactivated NF‐κB pathway as miR‐200b/c/429 was identified to target IκB kinase β (IKK‐β), an NF‐κB pathway‐related gene. Moreover, miR‐200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR‐200b/c/429 to regulate IKK‐β expression and then activated NF‐κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK‐β could reverse the effect of miR‐200b/c/429 inhibition on the progression of sh‐LINC00667‐transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR‐200b/c/429 family to regulate IKK‐β.  相似文献   

13.
14.

Background

Chronic hepatitis C (CH) can develop into liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Liver fibrosis and HCC development are strongly correlated, but there is no effective treatment against fibrosis because the critical mechanism of progression of liver fibrosis is not fully understood. microRNAs (miRNAs) are now essential to the molecular mechanisms of several biological processes. In order to clarify how the aberrant expression of miRNAs participates in development of the liver fibrosis, we analyzed the liver fibrosis in mouse liver fibrosis model and human clinical samples.

Methodology

In a CCL4-induced mouse liver fibrosis model, we compared the miRNA expression profile from CCL4 and olive oil administrated liver specimens on 4, 6, and 8 weeks. We also measured expression profiles of human miRNAs in the liver biopsy specimens from 105 CH type C patients without a history of anti-viral therapy.

Principle Findings

Eleven mouse miRNAs were significantly elevated in progressed liver fibrosis relative to control. By using a large amount of human material in CH analysis, we determined the miRNA expression pattern according to the grade of liver fibrosis. We detected several human miRNAs whose expression levels were correlated with the degree of progression of liver fibrosis. In both the mouse and human studies, the expression levels of miR-199a, 199a*, 200a, and 200b were positively and significantly correlated to the progressed liver fibrosis. The expression level of fibrosis related genes in hepatic stellate cells (HSC), were significantly increased by overexpression of these miRNAs.

Conclusion

Four miRNAs are tightly related to the grade of liver fibrosis in both human and mouse was shown. This information may uncover the critical mechanism of progression of liver fibrosis. miRNA expression profiling has potential for diagnostic and therapeutic applications.  相似文献   

15.
Vascular endothelial growth factor (VEGF) signaling plays an important role in angiogenesis. In the VEGF signaling pathway, the key components are VEGF and its receptors, Flt-1 and KDR. In this study, we show that transfection of synthetic miR-200b reduced protein levels of VEGF, Flt-1, and KDR. In A549 cells, miR-200b targeted the predicted binding sites in the 3′-untranslated region (3′-UTR) of VEGF, Flt-1, and KDR as revealed by a luciferase reporter assay. When transfected with miR-200b, the ability of HUVECs to form a capillary tube on Matrigel and VEGF-induced phosphorylation of ERK1/2 were significantly reduced. Taken together, these results suggest that miR-200b negatively regulates VEGF signaling by targeting VEGF and its receptors and that miR-200b may have therapeutic potential as an angiogenesis inhibitor.  相似文献   

16.
17.
18.
BACKGROUND: The human maspin gene encodes a protein in the serine proteinase inhibitor (serpin) family with tumor-suppressing functions in cell culture and in nude mice. In order to examine the role of maspin in an intact mammal, we cloned and sequenced the cDNA of mouse maspin. The recombinant protein was produced and its activity in cell culture was assessed. MATERIALS AND METHODS: Mouse maspin (mMaspin) was cloned by screening a mouse mammary gland cDNA library with the human maspin cDNA probe. Northern blot analysis was used to examine the expression patterns in mouse tissues, mammary epithelial cells, and carcinomas. Recombinant mMaspin protein was produced in E. coli. Invasion and motility assays were used to assess the biological function of mMaspin. RESULTS: mMaspin is 89% homologous with human maspin at the amino acid level. Like its human homolog, mMaspin is expressed in normal mouse mammary epithelial cells and down-regulated in mouse breast tumor cell lines. The expression is altered at different developmental stages in mammary gland. Addition of the recombinant mMaspin protein to mouse tumor cells was shown to inhibit invasion in a dose-dependent manner. As with the human protein, recombinant mMaspin protein also inhibited mouse mammary tumor motility. Deletion in the putative mMaspin reactive site loop (RSL) region resulted in the loss of its inhibitory functions. CONCLUSIONS: mMaspin is the mouse homolog of a human tumor suppressor gene. The expression of mMaspin is down-regulated in tumor cells and is altered at different developmental stages of mammary gland. mMaspin has inhibitory properties similar to those of human maspin in cell culture, suggesting that the homologous proteins play similar physiological roles in vivo.  相似文献   

19.
Urinary miRNAs are discussed as potential biomarkers for bladder cancer. The majority of miRNAs, however, are downregulated, making it difficult to utilize reduced miRNA signals as reliable diagnostic tools. Because the downregulation of miRNAs is frequently associated with hypermethylation of the respective regulative sequences, we studied whether DNA hypermethylation might serve as an improved diagnostic tool compared to measuring downregulated miRNAs. miRNA expression arrays and individual qPCR were used to identify and confirm miRNAs that were downregulated in malignant urothelial cells (RT4, 5637 and J82) when compared to primary, non-malignant urothelial cells (HUEPC). DNA methylation was determined by customized PCR-arrays subsequent to methylation-sensitive DNA-restriction and by mass spectrometry. miRNA expression and DNA methylation were determined in untreated cells and in cultures treated with the demethylating agent 5-Aza-2′-deoxycytidine. miR-200b, miR-152 and miR-10a displayed differential expression and methylation among untreated cancer cell lines. In addition, reduced miRNA expression of miR-200b, miR-152, and miR-10a was associated with increased DNA methylation in malignant cells versus HUEPC. Finally, the demethylation approach revealed a causal relationship between both parameters for miR-152 in 5637 and also suggests a causal connection of both parameters for miR-200b in J82 and miR-10a in 5637. In conclusion, our studies in multiple bladder cancer cell lines and primary non-malignant urothelial cells suggest that hypermethylation of miR-152, miR-10a and miR-200b regulative DNA sequences might serve as epigenetic bladder cancer biomarkers.  相似文献   

20.
Wang J  Song Y  Zhang Y  Xiao H  Sun Q  Hou N  Guo S  Wang Y  Fan K  Zhan D  Zha L  Cao Y  Li Z  Cheng X  Zhang Y  Yang X 《Cell research》2012,22(3):516-527
Recent studies have begun to reveal critical roles of microRNAs (miRNAs) in the pathogenesis of cardiac hypertrophy and dysfunction. In this study, we tested whether a transforming growth factor-β (TGF-β)-regulated miRNA played a pivotal role in the development of cardiac hypertrophy and heart failure (HF). We observed that miR-27b was upregulated in hearts of cardiomyocyte-specific Smad4 knockout mice, which developed cardiac hypertrophy. In vitro experiments showed that the miR-27b expression could be inhibited by TGF-β1 and that its overexpression promoted hypertrophic cell growth, while the miR-27b suppression led to inhibition of the hypertrophic cell growth caused by phenylephrine (PE) treatment. Furthermore, the analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-27b revealed that miR-27b overexpression was sufficient to induce cardiac hypertrophy and dysfunction. We validated the peroxisome proliferator-activated receptor-γ (PPAR-γ) as a direct target of miR-27b in cardiomyocyte. Consistently, the miR-27b transgenic mice displayed significantly lower levels of PPAR-γ than the control mice. Furthermore, in vivo silencing of miR-27b using a specific antagomir in a pressure-overload-induced mouse model of HF increased cardiac PPAR-γ expression, attenuated cardiac hypertrophy and dysfunction. The results of our study demonstrate that TGF-β1-regulated miR-27b is involved in the regulation of cardiac hypertrophy, and validate miR-27b as an efficient therapeutic target for cardiac diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号