首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 1 毫秒
1.
We chose an Elaeis interspecific pseudo-backcross of first generation (E. oleifera × E. guineensis) × E. guineensis to identify quantitative trait loci (QTLs) for fatty acid composition of palm oil. A dense microsatellite linkage map of 362 loci spanned 1.485 cM, representing the 16 pairs of homologous chromosomes in the Elaeis genus from which we traced segregating alleles from both E. oleifera and E. guineensis grandparents. The relative linear orders of mapped loci suggested the probable absence of chromosome rearrangements between the E. oleifera and E. guineensis genomes. A total of 19 QTL associated to the palm oil fatty acid composition were evidenced. The QTL positions and the species origin as well as the estimated effects of the QTL marker alleles were in coherence with the knowledge of the oil biosynthesis pathway in plants and with the individual phenotypic correlations between the traits. The mapping of chosen Elaeis key genes related to oleic acid C18:1, using intra-gene SNPs, supported several QTLs underlying notably FATA and SAD enzymes. The high number of hyper-variable SSR loci of known relative linear orders and the QTL information make these resources valuable for such mapping study in other Elaeis breeding materials.  相似文献   

2.
Knowledge of where roots are active is crucial for efficient management of nutrients in tree crops but measurement of root activity is problematic. Measurement using soil water depletion is an approach that has not been tested in a humid climate. We hypothesised that the three dimensional distribution of root activity of a tree crop in the humid tropics (a) can be determined by measuring soil water depletion during rain-free periods, and (b) is influenced by environment (soil type and climate) and surface management. A field study was carried out in which soil water content was measured and water uptake calculated (by difference between soil water content at beginning and end of rain-free periods) for different surface management zones and depths (0.1 m intervals to 1.6 m depth) under oil palm (Elaeis guineensis Jacq.) at a loam–clay site and a sandy site. Significant differences were measured between sites and between surface management zones at each site. At both sites water uptake was highest under the weeded zone close to the palm stem, slightly lower under the zone where pruned fronds are placed, and lowest under the path used for removing harvested fruit. Vertical distribution of root activity differed between the sites, with higher activity near the surface at the finer textured site. Total water uptake values were lower than estimates of evapotranspiration made using climate data. The difference was probably largely due to water uptake from deeper than 1.6 m. This study showed that the spatial distribution of tree root activity in a humid climate could be quantified using a relatively simple method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号