首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Expression of the GCN4 gene of Saccharomyces cerevisiae is regulated at the translational level by short open reading frames (uORFs) present in the leader sequence of its mRNA. Under conditions of amino acid sufficiency, these sequences restrict the flow of initiating ribosomes to the GCN4 AUG start codon. Mutational analysis of GCN4 has led to a model in which ribosomes must translate the 5'-proximal uORF1 and reassemble an initiation complex in order to translate GCN4. This reassembly process is thought to be rapid when amino acids are abundant, such that reinitiation occurs at uORF2, uORF3, or uORF4. Reinitiation at these sites prevents translation of GCN4, presumably because ribosomes dissociate from the mRNA following termination at uORFs 2 to 4. Because of reduced initiation factor activity under starvation conditions, a substantial fraction of ribosomal subunits scanning downstream from uORF1 are not ready to reinitiate when they reach uORFs 2 to 4, but become competent to do so while scanning the additional sequences between uORF4 and GCN4. Examination of the effects of point mutations in the ATG codons of the different uORFs suggests a quantitative model for this control mechanism that describes the probability of reinitiation as a function of the distance scanned downstream from uORF1. This model accounts for the phenotypes of a number of deletion and insertion mutations that alter the intercistronic spacing between the uORFs and GCN4. The correspondence between observed and predicted results implies that the differential rates of reinitiation at GCN4 versus uORFs 2 to 4 are determined largely by the different scanning times required to reach each of these start sites following translation of uORF1. In addition, it supports the notion that an increased scanning-time requirement for reinitiation in amino acid-starved cells forms the basis for translational derepression of GCN4 expression.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
The gene encoding human hemojuvelin (HJV) is one of the genes that, when mutated, can cause juvenile hemochromatosis, an early-onset inherited disorder associated with iron overload. The 5′ untranslated region of the human HJV mRNA has two upstream open reading frames (uORFs), with 28 and 19 codons formed by two upstream AUGs (uAUGs) sharing the same in-frame stop codon. Here we show that these uORFs decrease the translational efficiency of the downstream main ORF in HeLa and HepG2 cells. Indeed, ribosomal access to the main AUG is conditioned by the strong uAUG context, which results in the first uORF being translated most frequently. The reach of the main ORF is then achieved by ribosomes that resume scanning after uORF translation. Furthermore, the amino acid sequences of the uORF-encoded peptides also reinforce the translational repression of the main ORF. Interestingly, when iron levels increase, translational repression is relieved specifically in hepatic cells. The upregulation of protein levels occurs along with phosphorylation of the eukaryotic initiation factor 2α. Nevertheless, our results support a model in which the increasing recognition of the main AUG is mediated by a tissue-specific factor that promotes uORF bypass. These results support a tight HJV translational regulation involved in iron homeostasis.  相似文献   

15.
16.
17.
18.
19.
Upstream open reading frames (uORFs) are protein coding elements in the 5′ leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expression data from mutated 5′ leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type. Thus, eIF3h ensures that a fraction of uORF-translating ribosomes retain their competence to resume scanning. Experiments using the yeast GCN4 leader provided no evidence that eIF3h fosters tRNA reaquisition. Together, these results attribute a specific molecular function in translation initiation to an individual eIF3 subunit in a multicellular eukaryote.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号