首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous, among them, KCNQ4 is one of the most frequent disease-causing genes. More than twenty KCNQ4 mutations have been reported, but none of them were detected in Chinese mainland families. In this study, we identified a novel KCNQ4 mutation in a five generation Chinese family with 84 members and a known KCNQ4 mutation in a six generation Chinese family with 66 members. Mutation screening of 30 genes for ADNSHL was performed in the probands from thirty large Chinese families with ADNSHL by targeted region capture and high-throughput sequencing. The candidate variants and the co-segregation of the phenotype were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing in all ascertained family members. Then we identified a novel KCNQ4 mutation p.W275R in exon 5 and a known KCNQ4 mutation p.G285S in exon 6 in two large Chinese ADNSHL families segregating with post-lingual high frequency-involved and progressive sensorineural hearing loss. This is the first report of KCNQ4 mutation in Chinese mainland families. KCNQ4, a member of voltage-gated potassium channel family, is likely to be a common gene in Chinese patients with ADNSHL. The results also support that the combination of targeted enrichment and high-throughput sequencing is a valuable molecular diagnostic tool for autosomal dominant hereditary deafness.  相似文献   

2.
Hereditary hearing loss is a clinically and genetically heterogeneous disorder. More than 80 genes have been implicated to date, and with the advent of targeted genomic enrichment and massively parallel sequencing (TGE+MPS) the rate of novel deafness-gene identification has accelerated. Here we report a family segregating post-lingual progressive autosomal dominant non-syndromic hearing loss (ADNSHL). After first excluding plausible variants in known deafness-causing genes using TGE+MPS, we completed whole exome sequencing in three hearing-impaired family members. Only a single variant, p.Arg185Pro in HOMER2, segregated with the hearing-loss phenotype in the extended family. This amino acid change alters a highly conserved residue in the coiled-coil domain of HOMER2 that is essential for protein multimerization and the HOMER2-CDC42 interaction. As a scaffolding protein, HOMER2 is involved in intracellular calcium homeostasis and cytoskeletal organization. Consistent with this function, we found robust expression in stereocilia of hair cells in the murine inner ear and observed that over-expression of mutant p.Pro185 HOMER2 mRNA causes anatomical changes of the inner ear and neuromasts in zebrafish embryos. Furthermore, mouse mutants homozygous for the targeted deletion of Homer2 present with early-onset rapidly progressive hearing loss. These data provide compelling evidence that HOMER2 is required for normal hearing and that its sequence alteration in humans leads to ADNSHL through a dominant-negative mode of action.  相似文献   

3.
Tight junctions (TJs) are essential components of eukaryotic cells, and serve as paracellular barriers and zippers between adjacent tissues. TJs are critical for normal functioning of the organ of Corti, a part of the inner ear that causes loss of sensorineural hearing when damaged. To investigate the relation between genes involved in TJ function and hereditary loss of sensorineural hearing in the Korean population, we selected the TJP2 and CLDN14 genes as candidates for gene screening of 135 Korean individuals. The TJP2 gene, mutation of which causes autosomal dominant non-syndromic hearing loss (ADNSHL), lies at the DFNA51 locus on chromosome 9. The CLDN14 gene, mutation of which causes autosomal recessive non-syndromic hearing loss (ARNSHL), lies at the DFNB29 locus on chromosome 21. In the present study, we conducted genetic analyses of the TJP2 and CLDN14 genes in 87 unrelated patients with ADNSHL and 48 unrelated patients with either ARNSHL or potentially sporadic hearing loss. We identified two pathogenic variations, c.334G>A (p.A112T) and c.3562A>G (p.T1188A), and ten single nucleotide polymorphisms (SNPs) in the TJP2 gene. We found eight non-pathogenic variations in the CLDN14 gene. These findings indicate that, whereas mutation of the TJP2 gene might cause ADNSHL, CLDN14 is not a major causative gene for ARNSHL in the Korean population studied. Our findings may improve the understanding of the genetic cause of non-syndromic hearing loss in the Korean population.  相似文献   

4.
The collagen type XI alpha 2 gene (COL11A2) is associated with autosomal dominant non-syndromic hearing loss (ADNSHL), and all mutations of this gene in ADNSHL are missense mutations. To evaluate its potential as a major causative gene of ADNSHL in the Korean population, we performed genetic analysis of COL11A2 in 75 unrelated Korean patients with ADNSHL. Consequently, 5 non-synonymous variants, 7 synonymous variants, and 6 intronic variants were identified in COL11A2. Among them, a novel variant, p.G829R (c.2485G>C) was found in a patient as a heterozygote. However, pedigree analysis showed this variation was not co-segregated with hearing loss. Previously reported variants p.G230W (c.688G>T) and p.P1422L (c.4265C>T) were discovered in Korean patients. However, these variants were also detected in normal individuals. These results suggest that COL11A2 is not a major causative gene of ADNSHL in the Korean population.  相似文献   

5.
Hearing loss (HL) is the most prevalent sensory disorder whose etiology comes from environmental and/or genetic factors. Approximately 60 % of HL cases are due to mutations in genes responsible for maintaining a normal hearing function. Despite the monogenic inheritance of hereditary hearing loss (HHL), its diagnosis is challenging as both clinical and genetic heterogeneity characterizes it. Through the development of next-generation sequencing (NGS) techniques, the number of identified mutations responsible for HHL has increased exponentially during the last decade. Mutations in the TMC1 have been reported in several patients with nonsyndromic hereditary hearing loss (NSHHL), more precisely in cases with an autosomal recessive inheritance pattern. In this study, we conducted whole-exome sequencing (WES) analysis of a United Arabs Emirates (UAE) family with autosomal recessive nonsyndromic hearing loss (ARNSHL). This analysis revealed segregation of the TMC1 missense mutation c.596A > T (p.Asn199Ile) with the disease. Bioinformatics analysis supported the pathogenic effect of this mutation and predicted its impact at the proteomics level. Molecular docking analysis of TMC2WT, TMC2R123K, TMC2Q205R, and TMC2R123K + Q205R. Finally, protein docking results suggest a role for TMC2 variants in the phenotypic variability observed within the investigated family.  相似文献   

6.
Approximately half of congenital hearing impairment cases are inherited, with non-syndromic hearing impairment (NSHI) being the most frequent clinical entity of genetic hearing impairment cases. A family from Cameroon with NSHI was investigated by performing exome sequencing using DNA samples obtained from three family members, followed by direct Sanger sequencing in additional family members and controls participants. We identified an autosomal dominantly inherited novel missense variant [NM_001174116.2:c.918G>T; p.(Q306H)] in DMXL2 gene (MIM:612186) that co-segregates with mild to profound non-syndromic sensorineural hearing impairment . The p.(Q306H) variant which substitutes a highly conserved glutamine residue is predicted deleterious by various bioinformatics tools and is absent from several genome databases. This variant was also neither found in 121 apparently healthy controls without a family history of hearing impairment , nor 112 sporadic NSHI cases from Cameroon. There is one previous report of a large Han Chinese NSHI family that segregates a missense variant in DMXL2. The present study provides additional evidence that DMXL2 is involved in hearing impairment etiology, and we suggest DMXL2 should be considered in diagnostic hearing impairment panels.  相似文献   

7.
8.
Deafness is a really common disorder in humans. It can begin at any age with any degree of severity. Hereditary hearing loss is characterized by a vast genetic heterogeneity with more than 140 loci described in humans but only 65 genes so far identified. Families affected by hearing impairment would have real advantages from an early molecular diagnosis that is of primary relevance in genetic counseling. In this perspective, here we report a family-based approach employing Ion Torrent DNA sequencing technology to analyze coding and UTR regions of 96 genes related to hearing function and loss in a first series of 12 families coming from Italy and Qatar. Using this approach we were able to find the causative gene in 4 out of these 12 families (33%). In particular 5 novel alleles were identified in the following genes LOXHD1, TMPRSS3, TECTA and MYO15A already associated with hearing impairment. Our study confirms the usefulness of a targeted sequencing approach despite larger numbers are required for further validation and for defining a molecular epidemiology picture of hearing loss in these two countries.  相似文献   

9.
Sagong B  Park HJ  Lee KY  Kim UK 《Gene》2012,492(1):239-243
Mutations of the TECTA gene, which encodes alpha-tectorin, are associated with both dominant (DFNA8/A12) and recessive (DFNB 21) modes of inherited nonsyndromic sensorineural hearing loss, respectively. Although clinical data and genetic analysis for TECTA gene have been reported from different groups, there is no report that compound heterozygous mutations in the TECTA gene result in nonsyndromic sensorineural hearing loss. Here, we identified a missense mutation (p.C1691F) and a splicing mutation (c.6162 + 3insT), one in each TECTA allele, in the patient with hearing loss. Also, we demonstrated that the splicing mutation results in the abnormal skipping of an exon, which leads to a truncated protein as determined by exon-trapping analysis. To the best of our knowledge, this is the first report of an in vitro functional study of splice site mutations in the TECTA gene.  相似文献   

10.
Mutations of MYO15A are generally known to cause severe to profound hearing loss throughout all frequencies. Here, we found two novel MYO15A mutations, c.3871C>T (p.L1291F) and c.5835T>G (p.Y1945X) in an affected individual carrying congenital profound sensorineural hearing loss (SNHL) through targeted resequencing of 134 known deafness genes. The variant, p.L1291F and p.Y1945X, resided in the myosin motor and IQ2 domains, respectively. The p.L1291F variant was predicted to affect the structure of the actin-binding site from three-dimensional protein modeling, thereby interfering with the correct interaction between actin and myosin. From the literature analysis, mutations in the N-terminal domain were more frequently associated with residual hearing at low frequencies than mutations in the other regions of this gene. Therefore we suggest a hypothetical genotype-phenotype correlation whereby MYO15A mutations that affect domains other than the N-terminal domain, lead to profound SNHL throughout all frequencies and mutations that affect the N-terminal domain, result in residual hearing at low frequencies. This genotype-phenotype correlation suggests that preservation of residual hearing during auditory rehabilitation like cochlear implantation should be intended for those who carry mutations in the N-terminal domain and that individuals with mutations elsewhere in MYO15A require early cochlear implantation to timely initiate speech development.  相似文献   

11.
Tectorial membrane, an extracellular matrix of the cochlea, plays a crucial role in the transmission of sound to the sensory hair cells. Alpha-tectorin is the most important noncollagenous component of the tectorial membrane and the otolith membrane in the maculae of the vestibular system. Defects in TECTA, the gene encodes alpha-tectorin, are cause of both dominant (DFNA8/12) and recessive (DFNB21) forms of deafness. Here, we report a three-generation Chinese family characterized by prelingual progressive sensorineural hearing impairment. We mapped the disease locus to chromosome 11q23-24 region, overlapping with the DFNA8/12 locus. Sequencing of candidate gene TECTA revealed a heterozygous c.5945C>A substitution in exon 19, causing amino acid substitution of Ala to Asp at a conservative position 1982. The A1982D substitution is consistent with hearing loss in this Chinese family and has not been found in 200 random control chromosomes. To our knowledge, this is the first TECTA mutation identified in Chinese population. Our data provides additional molecular and clinical information for establishing a better genotype–phenotype understanding of DFNA8/12.  相似文献   

12.
The linkage search for susceptibility loci using SNP markers in hereditary hearing loss has proven challenging due to genetic heterogeneity. We conducted a genome-wide linkage analysis using high-density SNP markers in two Korean families (families coded SD-J and SR-167) with autosomal dominant non-syndromic hearing loss (ADNSHL). Evidence was found of linkage at 8q24.13~q24.3 and 10p11.21~q22.2 (LOD 3.01) in the SD-J family. In the case of family SR-167, which had the most affected members, the parametric LOD score was low owing to the lack of power for linkage analysis. However, using non-parametric linkage analysis, it was possible to obtain significant evidence for linkage at 10q22.1~q23.31 (LOD 1.79; NPL 6.47, P<0.00001). There is an overlapping region with a significant LOD score between the SD-J and SR-167 families, which encompasses 4 cM at 10q22.1~22.2. Interestingly, the characteristics of hearing loss in both families were similar, and the haplotype within overlapping region was shared in the affected individuals of the two families. We performed direct sequencing of the candidate genes that are thought to be causing the condition, but no disease-causing mutations were identified.  相似文献   

13.
Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 “known” disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome.  相似文献   

14.
The development of next generation sequencing techniques has facilitated the detection of mutations at an unprecedented rate. These efficient tools have been particularly beneficial for extremely heterogeneous disorders such as autosomal recessive non-syndromic hearing loss, the most common form of genetic deafness. GJB2 mutations are the most common cause of hereditary hearing loss. Amongst them the NM_004004.5: c.506G > A (p.Cys169Tyr) mutation has been associated with varying severity of hearing loss with unclear segregation patterns. In this study, we report a large consanguineous Emirati family with severe to profound hearing loss fully segregating the GJB2 missense mutation p.Cys169Tyr. Whole exome sequencing (WES), in silico, splicing and expression analyses ruled out the implication of any other variants and confirmed the implication of the p.Cys169Tyr mutation in this deafness family. We also show preliminary murine expression analysis that suggests a link between the TMEM59 gene and the hearing process. The present study improves our understanding of the molecular pathogenesis of hearing loss. It also emphasizes the significance of combining next generation sequencing approaches and segregation analyses especially in the diagnosis of disorders characterized by complex genetic heterogeneity.  相似文献   

15.
Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.  相似文献   

16.

Background

Inherited cardiac conduction diseases (CCD) are rare but are caused by mutations in a myriad of genes. Recently, whole-exome sequencing has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases.

Objective

To investigate the genetic background of a family affected by inherited CCD.

Methods and Results

We used whole-exome sequencing to study a Chinese family with multiple family members affected by CCD. Using the pedigree information, we proposed a heterozygous missense mutation (c.G695T, Gly232Val) in the lamin A/C (LMNA) gene as a candidate mutation for susceptibility to CCD in this family. The mutation is novel and is expected to affect the conformation of the coiled-coil rod domain of LMNA according to a structural model prediction. Its pathogenicity in lamina instability was further verified by expressing the mutation in a cellular model.

Conclusions

Our results suggest that whole-exome sequencing is a feasible approach to identifying the candidate genes underlying inherited conduction diseases.  相似文献   

17.
Sirmaci A  Edwards YJ  Akay H  Tekin M 《PloS one》2012,7(2):e32000
Whole exome sequencing provides unprecedented opportunities to identify causative DNA variants in rare Mendelian disorders. Finding the responsible mutation via traditional methods in families with hearing loss is difficult due to a high degree of genetic heterogeneity. In this study we combined autozygosity mapping and whole exome sequencing in a family with 3 affected children having nonsyndromic hearing loss born to consanguineous parents. Two novel missense homozygous variants, c.508C>A (p.H170N) in GIPC3 and c.1328C>T (p.T443M) in ZNF57, were identified in the same ~6 Mb autozygous region on chromosome 19 in affected members of the family. Both variants co-segregated with the phenotype and were absent in 335 ethnicity-matched controls. Biallelic GIPC3 mutations have recently been reported to cause autosomal recessive nonsyndromic sensorineural hearing loss. Thus we conclude that the hearing loss in the family described in this report is caused by a novel missense mutation in GIPC3. Identified variant in GIPC3 had a low read depth, which was initially filtered out during the analysis leaving ZNF57 as the only potential causative gene. This study highlights some of the challenges in the analyses of whole exome data in the bid to establish the true causative variant in Mendelian disease.  相似文献   

18.
Identification of the pathogenic mutations underlying autosomal recessive nonsyndromic hearing loss (ARNSHL) is difficult, since causative mutations in 39 different genes have so far been reported. After excluding mutations in the most common ARNSHL gene, GJB2, via Sanger sequencing, we performed whole-exome sequencing (WES) in 30 individuals from 20 unrelated multiplex consanguineous families with ARNSHL. Agilent SureSelect Human All Exon 50 Mb kits and an Illumina Hiseq2000 instrument were used. An average of 93%, 84% and 73% of bases were covered to 1X, 10X and 20X within the ARNSHL-related coding RefSeq exons, respectively. Uncovered regions with WES included those that are not targeted by the exome capture kit and regions with high GC content. Twelve homozygous mutations in known deafness genes, of which eight are novel, were identified in 12 families: MYO15A-p.Q1425X, -p.S1481P, -p.A1551D; LOXHD1-p.R1494X, -p.E955X; GIPC3-p.H170N; ILDR1-p.Q274X; MYO7A-p.G2163S; TECTA-p.Y1737C; TMC1-p.S530X; TMPRSS3-p.F13Lfs*10; TRIOBP-p.R785Sfs*50. Each mutation was within a homozygous run documented via WES. Sanger sequencing confirmed co-segregation of the mutation with deafness in each family. Four rare heterozygous variants, predicted to be pathogenic, in known deafness genes were detected in 12 families where homozygous causative variants were already identified. Six heterozygous variants that had similar characteristics to those abovementioned variants were present in 15 ethnically-matched individuals with normal hearing. Our results show that rare causative mutations in known ARNSHL genes can be reliably identified via WES. The excess of heterozygous variants should be considered during search for causative mutations in ARNSHL genes, especially in small-sized families.  相似文献   

19.
Spondyloepiphyseal dysplasia congenita (SEDC) is an autosomal dominant chondrodysplasia characterized by disproportionate short-trunk dwarfism, skeletal and vertebral deformities. Exome sequencing and Sanger sequencing were performed in a Chinese Han family with typical SEDC, and a novel mutation, c.620G>A (p.Gly207Glu), in the collagen type II alpha-1 gene (COL2A1) was identified. The mutation may impair protein stability, and lead to dysfunction of type II collagen. Family-based study suggested that the mutation is a de novo mutation. Our study extends the mutation spectrum of SEDC and confirms genotype-phenotype relationship between mutations at glycine in the triple helix of the alpha-1(II) chains of the COL2A1 and clinical findings of SEDC, which may be helpful in the genetic counseling of patients with SEDC.  相似文献   

20.
Hearing loss is a complex disorder caused by both genetic and environmental factors. Previously, mutations in CIB2 have been identified as a common cause of genetic hearing loss in Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transition mutation in the CIB2 gene identified through whole exome sequencing (WES) in a Caribbean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within predicted type II PDZ binding ligand at the carboxy terminus. Our ex vivo studies revealed that the mutation did not alter the interactions of CIB2 with Whirlin, nor its targeting to the tips of hair cell stereocilia. However, we found that the mutation disrupts inhibition of ATP-induced Ca2+ responses by CIB2 in a heterologous expression system. Our findings support p.(Arg186Trp) mutation as a cause for hearing loss in this Hispanic family. In addition, it further highlights the necessity of the calcium binding property of CIB2 for normal hearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号