首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) catalysed by O-GlcNAc transferase (OGT) has been linked to regulation of diverse cellular functions. OGT possesses a C-terminal glycosyltransferase catalytic domain and N-terminal tetratricopeptide repeats that are implicated in protein–protein interactions. Drosophila OGT (DmOGT) is encoded by super sex combs (sxc), mutants of which are pupal lethal. However, it is not clear if this phenotype is caused by reduction of O-GlcNAcylation. Here we use a genetic approach to demonstrate that post-pupal Drosophila development can proceed with negligible OGT catalysis, while early embryonic development is OGT activity-dependent. Structural and enzymatic comparison between human OGT (hOGT) and DmOGT informed the rational design of DmOGT point mutants with a range of reduced catalytic activities. Strikingly, a severely hypomorphic OGT mutant complements sxc pupal lethality. However, the hypomorphic OGT mutant-rescued progeny do not produce F2 adults, because a set of Hox genes is de-repressed in F2 embryos, resulting in homeotic phenotypes. Thus, OGT catalytic activity is required up to late pupal stages, while further development proceeds with severely reduced OGT activity.  相似文献   

2.
Post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase, both encoded by single, essential, genes in metazoan genomes. It is not understood how OGT recognises its sugar nucleotide donor and performs O-GlcNAc transfer onto proteins/peptides, and how the enzyme recognises specific cellular protein substrates. Here, we show, by X-ray crystallography and mutagenesis, that OGT adopts the (metal-independent) GT-B fold and binds a UDP-GlcNAc analogue at the bottom of a highly conserved putative peptide-binding groove, covered by a mobile loop. Strikingly, the tetratricopeptide repeats (TPRs) tightly interact with the active site to form a continuous 120 Å putative interaction surface, whereas the previously predicted phosphatidylinositide-binding site locates to the opposite end of the catalytic domain. On the basis of the structure, we identify truncation/point mutants of the TPRs that have differential effects on activity towards proteins/peptides, giving first insights into how OGT may recognise its substrates.  相似文献   

3.
A large number of O-linked N-acetylglucosamine (O-GlcNAc) residues have been mapped in vertebrate proteins, however targets of O-GlcNAcylation in plants still have not been characterized. We show here that O-GlcNAcylation of the N-terminal region of the capsid protein of Plum pox virus resembles that of animal proteins in introducing O-GlcNAc monomers. Thr-19 and Thr-24 were specifically O-GlcNAcylated. These residues are surrounded by amino acids typical of animal O-GlcNAc acceptor sites, suggesting that the specificity of O-GlcNAc transferases is conserved among plants and animals. In laboratory conditions, mutations preventing O-GlcNAcylation of Thr-19 and Thr-24 did not have noticeable effects on PPV competence to infect Prunus persicae or Nicotiana clevelandii. However, the fact that Thr-19 and Thr-24 are highly conserved among different PPV strains suggests that their O-GlcNAc modification could be relevant for efficient competitiveness in natural conditions.  相似文献   

4.
Nutrient-sensitive pathways regulate both O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK), cooperatively connecting metabolic homeostasis to regulation of numerous intracellular processes essential for life. Similar to phosphorylation, catalyzed by kinases such as AMPK, O-GlcNAcylation is a highly dynamic Ser/Thr-specific post-translational modification of nuclear, cytoplasmic, and mitochondrial proteins catalyzed exclusively by OGT. OGT and AMPK target a multitude of intracellular proteins, with the net effect to protect cells from the damaging effects of metabolic stress. Despite hundreds of studies demonstrating significant overlap in upstream and downstream signaling processes, no study has investigated if OGT and AMPK can directly regulate each other. We show acute activation of AMPK alters the substrate selectivity of OGT in several cell lines and nuclear localization of OGT in C2C12 skeletal muscle myotubes. Nuclear localization of OGT affects O-GlcNAcylation of numerous nuclear proteins and acetylation of Lys-9 on histone 3 in myotubes. AMPK phosphorylates Thr-444 on OGT in vitro; phosphorylation of Thr-444 is tightly associated with AMPK activity and nuclear localization of OGT in myotubes, and phospho-mimetic T444E-OGT exhibits altered substrate selectivity. Conversely, the α- and γ-subunits of AMPK are O-GlcNAcylated, O-GlcNAcylation of the γ1-subunit increases with AMPK activity, and acute inhibition of O-GlcNAc cycling disrupts activation of AMPK. We have demonstrated significant cross-talk between the O-GlcNAc and AMPK systems, suggesting OGT and AMPK may cooperatively regulate nutrient-sensitive intracellular processes that mediate cellular metabolism, growth, proliferation, and/or tissue function.  相似文献   

5.
cDNAs encoding three isoforms of OGT (ncOGT, mOGT, and sOGT) were expressed in Escherichia coli in which the coexpression system of OGT with target substrates was established in vivo. No endogenous bacterial proteins were significantly O-GlcNAcylated by any type of OGT isoform while co-expressed p62 and Sp1 were strongly O-GlcNAcylated by ncOGT. These results suggest that most of bacterial proteins appear not to be recognized as right substrates by mammalian OGT whereas cytosolic environments may supply UDP-GlcNAc enough to proceed to O-GlcNAcylation in E. coli. Under these conditions, sOGT was auto-O-GlcNAcylated whereas ncOGT and mOGT were not. Importantly, we found that when Sp1 was coexpressed, ncOGT can O-GlcNAcylate not only Sp1 but also many bacterial proteins. Our findings suggest that Sp1 may modulate the capability of target recognition of ncOGT by which ncOGT can be led to newly recognize bacterial proteins as target substrates, finally generating the O-glyco-bacteria. Our results demonstrate that the O-glyco-bacteria showed enhanced thermal resistance to allow cell survival at a temperature as high as 52 °C.  相似文献   

6.
In order to understand the importance of the cytosolic and nuclear-specific O-linked N-acetylglucosaminylation (O-GlcNAc) on cell cycle regulation, we recently reported that inhibition of O-GlcNAc transferase (OGT) delayed or blocked Xenopus laevis oocyte germinal vesicle breakdown (GVBD). Here, we show that increased levels of the long OGT isoform (ncOGT) accelerate X. laevis oocyte GVBD. A N-terminally truncated isoform (sOGT) with a similar in vitro catalytic activity towards a synthetic CKII-derived peptide had no effect, illustrating the important role played by the N-terminal tetratrico-peptide repeats. ncOGT microinjection in the oocytes increases both the speed and extent of O-GlcNAc addition, leads to a quicker activation of the MPF and MAPK pathways and finally results in a faster GVBD. Microinjection of anti-OGT antibodies leads to a delay of the GVBD kinetics. Our results hence demonstrate that OGT is a key molecule for the timely progression of the cell cycle.  相似文献   

7.

Background

Post-translational modification by ubiquitin is a fundamental regulatory mechanism that is implicated in many cellular processes including the cell cycle, apoptosis, cell adhesion, angiogenesis, and tumor growth. The low stoichiometry of ubiquitylation presents an analytical challenge for the detection of endogenously modified proteins in the absence of enrichment strategies. The recent availability of antibodies recognizing peptides with Lys residues containing a di-Gly ubiquitin remnant (K-ε-GG) has greatly improved the ability to enrich and identify ubiquitylation sites from complex protein lysates via mass spectrometry. To date, there have not been any published studies that quantitatively assess the changes in endogenous ubiquitin-modification protein stoichiometry status at the proteome level from different tissues.

Results

In this study, we applied an integrated quantitative mass spectrometry based approach using isobaric tags for relative and absolute quantitation (iTRAQ) to interrogate the ubiquitin-modified proteome and the cognate global proteome levels from luminal and basal breast cancer patient-derived xenograft tissues. Among the proteins with quantitative global and ubiquitylation data, 91 % had unchanged levels of total protein relative abundance, and less than 5 % of these proteins had up- or down-regulated ubiquitylation levels. Of particular note, greater than half of the proteins with observed changes in their total protein level also had up- or down-regulated changes in their ubiquitylation level.

Conclusions

This is the first report of the application of iTRAQ-based quantification to the integrated analysis of the ubiquitylated and global proteomes at the tissue level. Our results underscore the importance of conducting integrated analyses of the global and ubiquitylated proteomes toward elucidating the specific functional significance of ubiquitylation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12014-015-9086-5) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
O-linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer’s and Parkinson’s diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.  相似文献   

11.
The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked GlcNAc (O-GlcNAc). While Arabidopsis has two O-GlcNAc transferases, SECRET AGENT (SEC) and SPINDLY (SPY), previous work suggests that SEC modifies PPV-CP and that the modification plays a role in the infection process. Here, we show that when co-expressed in Escherichia coli SEC modifies PPV-CP. Deletion mapping and site-directed mutagenesis identified three threonine and a serine located near the N-terminus of PPV-CP that are modified by SEC. Two of these threonines have recently been shown to be modified in virus from plants suggesting that SEC has the same specificity in plants and E. coli.  相似文献   

12.
13.
14.
15.
16.
The dynamic modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an essential posttranslational modification present in higher eukaryotes. Removal of O-GlcNAc is catalysed by O-GlcNAcase, a multi-domain enzyme that has been reported to be bifunctional, possessing both glycoside hydrolase and histone acetyltransferase (AT) activity. Insights into the mechanism, protein substrate recognition and inhibition of the hydrolase domain of human OGA (hOGA) have been obtained via the use of the structures of bacterial homologues. However, the molecular basis of AT activity of OGA, which has only been reported in vitro, is not presently understood. Here, we describe the crystal structure of a putative acetyltransferase (OgpAT) that we identified in the genome of the marine bacterium Oceanicola granulosus, showing homology to the hOGA C-terminal AT domain (hOGA-AT). The structure of OgpAT in complex with acetyl coenzyme A (AcCoA) reveals that, by homology modelling, hOGA-AT adopts a variant AT fold with a unique loop creating a deep tunnel. The structures, together with mutagenesis and surface plasmon resonance data, reveal that while the bacterial OgpAT binds AcCoA, the hOGA-AT does not, as explained by the lack of key residues normally required to bind AcCoA. Thus, the C-terminal domain of hOGA is a catalytically incompetent ‘pseudo’-AT.  相似文献   

17.
O-Linked β-N-acetylglucosamine, or O-GlcNAc, is a dynamic post-translational modification that cycles on and off serine and threonine residues of nucleocytoplasmic proteins. The O-GlcNAc modification shares a complex relationship with phosphorylation, as both modifications are capable of mutually inhibiting the occupation of each other on the same or nearby amino acid residue. In addition to diabetes, cancer, and neurodegenerative diseases, O-GlcNAc appears to play a significant role in cell growth and cell cycle progression, although the precise mechanisms are still not well understood. A recent study also found that all four core nucleosomal histones (H2A, H2B, H3, and H4) are modified with O-GlcNAc, although no specific sites on H3 were reported. Here, we describe that histone H3, a protein highly phosphorylated during mitosis, is modified with O-GlcNAc. Several biochemical assays were used to validate that H3 is modified with O-GlcNAc. Mass spectrometry analysis identified threonine 32 as a novel O-GlcNAc site. O-GlcNAc was detected at higher levels on H3 during interphase than mitosis, which inversely correlated with phosphorylation. Furthermore, increased O-GlcNAcylation was observed to reduce mitosis-specific phosphorylation at serine 10, serine 28, and threonine 32. Finally, inhibiting OGA, the enzyme responsible for removing O-GlcNAc, hindered the transition from G2 to M phase of the cell cycle, displaying a phenotype similar to preventing mitosis-specific phosphorylation on H3. Taken together, these data indicate that O-GlcNAcylation regulates mitosis-specific phosphorylations on H3, providing a mechanistic switch that orchestrates the G2-M transition of the cell cycle.  相似文献   

18.
Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35 kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35 kDa protein was ~ 98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates.  相似文献   

19.
The enzyme PGC is produced by the fungus Aspergillus niger during invasion of plant cell walls. The enzyme has been homologously overexpressed to provide sufficient quantities of purified enzyme for biological studies. We have characterized this enzyme in terms of its posttranslational modifications (PTMs) and found it to be both N- and O-glycosylated. The glycosyl moieties have also been characterized. This has involved a combination of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), liquid chromatography (LC)-ion trap, and LC-electrospray ionization (ESI) mass spectrometries in conjunction with trypsin degradation and beta-elimination, followed by Michael addition with dithiothreitol (BEMAD). This is the first demonstration of the ability of BEMAD to map glycosylation sites other than O-GlcNAc sites. The complete characterization of all PTMs on PGC allows us to model them on the peptide backbone, revealing potential roles played by the glycans in modulating the interaction of the enzyme with other macromolecules.  相似文献   

20.
Gastrointestinal nematode infections of livestock animals are prevalent and costly problems worldwide. Currently, infections are controlled by anthelmintic chemicals but increasing drug resistance has prompted research interest to shift towards alternative methods of control such as vaccine development and selection of worm-resistant animals. The present study analyses proteins from Trichostrongylus colubriformis infective L3s that are recognised by IgG of immune sheep. Following protein separation via two-dimensional electrophoresis and Western blot probing with plasma from sheep resistant to T. colubriformis, mass spectrometry-based proteomic analyses were used to identify immuno-reactive protein spots. We were able to identify 28 immune targets, including aspartyl protease inhibitor, enolase, chaperone proteins, galectin, glycolytic enzymes, kinase, phosphatase and structural muscle proteins such as myosin, paramyosin, calponin and DIM-1. The data suggest that immune responses to T. colubriformis are dispersed over a relatively large number of parasite antigens, including several cytoplasmically expressed proteins. The results have new implications for understanding the molecular mechanisms that underpin host-parasite interaction during gastrointestinal nematode infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号