首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
鸡枞菌转录组分析揭示其对木质纤维素的降解功能   总被引:2,自引:0,他引:2  
【目的】探究鸡枞菌是否能降解木质纤维素成分,并理解其与共生白蚁之间的共生关系。【方法】本研究是应用新一代高通量测序技术454 GS FLX Titanium对鸡枞菌的转录组进行测序,挖掘鸡枞菌中能参与降解纤维素和木质素等成分的多样性酶系。【结果】八分之一的RUN测序总共得到了82386条表达序列标签,去除引物和载体等序列后,剩余的54410条序列被拼接成3301条contigs以及3193条singletons。根据序列相似性,将这些unigenes与三大蛋白数据库(Nr数据库、SwissProt数据库、CDD数据库)中的蛋白序列进行BLAST比较,发现有2681条基因与其他生物的已知基因有不同程度的相似性。在鸡枞菌的这些转录产物中,有33条编码可能参与降解纤维素或半纤维素的酶基因,其中包括5种纤维素酶以及28种水解半纤维素、淀粉或几丁质等物质的酶类。更重要的是,还发现了4种漆酶以及一种芳基乙醇氧化酶基因,这些都是能有效降解木质素的酶类。这些结果揭示了鸡枞菌中存在漆酶并可能有效降解植物残渣中的酚化合物。【结论】这些基因的发现说明了鸡枞菌能降解木质素,并能与共生白蚁分泌的纤维素酶协同作用有效降解纤维素。  相似文献   

7.
The red palm weevil (RPW; Rhynchophorus ferrugineus) is a devastating pest of palms, prevalent in the Middle East as well as many other regions of the world. Here, we report a large‐scale de novo complementary DNA (cDNA) sequencing effort that acquired ~5 million reads and assembled them into 26 765 contigs from 12 libraries made from samples of different RPW developmental stages based on the Roche/454 GS FLX platform. We annotated these contigs based on the publically available known insect genes and the Tribolium castaneum genome assembly. We find that over 80% of coding sequences (CDS) from the RPW contigs have high‐identity homologs to known proteins with complete CDS. Gene expression analysis shows that the pupa and larval stages have the highest and lowest expression levels, respectively. In addition, we also identified more than 60 000 single nucleotide polymorphisms and 1 200 simple sequence repeat markers. This study provides the first large‐scale cDNA dataset for RPW, a much‐needed resource for future molecular studies.  相似文献   

8.
Euphorbiaceae represents flowering plants family of tropical and sub-tropical region rich in secondary metabolites of economic importance. To understand and assess the genetic makeup among the members, this study was undertaken to characterize and compare SSR markers from publicly available ESTs and GSSs of nine selected species of the family. Mining of SSRs was performed by MISA, primer designing by Primer3, while functional annotation, gene ontology (GO) and enrichment analysis were performed by Blast2GO. A total 12,878 number of SSRs were detected from 101,701 number of EST sequences. SSR density ranged from 1 SSR/3.22 kb to 1 SSR/15.65 kb. A total of 1873 primer pairs were designed for the annotated SSR-Contigs. About 77.07% SSR–ESTs could be assigned a significant match to the protein database. 3037 unique SSR–FDM were assigned and IPR003657 (WRKY Domain) was found to be the most dominant FDM among the members. 1810 unique GO terms obtained were further subjected to enrichment analysis to obtain 513 statistically significant GO terms mapped to the SSR containing ESTs. Most frequent enriched GO terms were, GO:0003824 for molecular function, GO:0006350 for biological process and GO:0005886 for cellular component, justifying the richness of defensive secondary metabolites and phytomedicine within the family. The results from this study provides tangible insight to genetic make-up and distribution of SSRs. Functional annotation corresponded many genes of unknown functions which may be considered as novel genes or genes responsible for stress specific secondary metabolites. Further studies are required to understand stress specific genes accountable for leveraging the synthesis of secondary metabolites.  相似文献   

9.
10.
The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.  相似文献   

11.
12.
The 454 Genome Sequencer (GS) FLX System is one of the next-generation sequencing systems featured by long reads, high accuracy, and ultra-high throughput. Based on the mechanism of emulsion PCR, a unique DNA template would only generate a unique sequence read after being amplified and sequenced on GS FLX. However, biased amplification of DNA templates might occur in the process of emulsion PCR, which results in production of artificial duplicate reads. Under the condition that each DNA template is unique to another, 3.49%-18.14% of total reads in GS FLX-sequencing data were found to be artificial duplicate reads. These duplicate reads may lead to misunderstanding of sequencing data and special attention should be paid to the potential biases they introduced to the data.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
The development and screening of microsatellite markers have been accelerated by next‐generation sequencing (NGS) technology and in particular GS‐FLX pyro‐sequencing (454). More recent platforms such as the PGM semiconductor sequencer (Ion Torrent) offer potential benefits such as dramatic reductions in cost, but to date have not been well utilized. Here, we critically compare the advantages and disadvantages of microsatellite development using PGM semiconductor sequencing and GS‐FLX pyro‐sequencing for two gymnosperm (a conifer and a cycad) and one angiosperm species. We show that these NGS platforms differ in the quantity of returned sequence data, unique microsatellite data and primer design opportunities, mostly consistent with the differences in read length. The strength of the PGM lies in the large amount of data generated at a comparatively lower cost and time. The strength of GS‐FLX lies in the return of longer average length sequences and therefore greater flexibility in producing markers with variable product length, due to longer flanking regions, which is ideal for capillary multiplexing. These differences need to be considered when choosing a NGS method for microsatellite discovery. However, the ongoing improvement in read lengths of the NGS platforms will reduce the disadvantage of the current short read lengths, particularly for the PGM platform, allowing greater flexibility in primer design coupled with the power of a larger number of sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号