首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pairing of sister chromatids in interphase facilitates error-free homologous recombination (HR). Sister chromatids are held together by cohesin, one of three Structural Maintenance of Chromosomes (SMC) complexes. In mitosis, chromosome condensation is controlled by another SMC complex, condensin, and the type II topoisomerase (Top2). In prophase, cohesin is stripped from chromosome arms, but remains at centromeres until anaphase, whereupon it is removed via proteolytic cleavage. The third SMC complex, Smc5/6, is generally described as a regulator of HR-mediated DNA repair. However, cohesin and condensin are also required for DNA repair, and HR genes are not essential for cell viability, but the SMC complexes are. Smc5/6 null mutants die in mitosis, and in fission yeast, Smc5/6 hypomorphs show lethal mitoses following genotoxic stress, or when combined with a Top2 mutant, top2-191. We found these mitotic defects are due to retention of cohesin on chromosome arms. We also show that Top2 functions in the cohesin cycle, and accumulating data suggests this is not related to its decatenation activity. Thus the SMC complexes and Top2 functionally interact, and any DNA repair function ascribed to Smc5/6 is likely a reflection of a more fundamental role in the regulation of chromosome structure.  相似文献   

2.
Chromosomes are subjected to massive reengineering as they are replicated, transcribed, repaired, condensed, and segregated into daughter cells. Among the engineers are three large protein complexes collectively known as the structural maintenance of chromosome (SMC) complexes: cohesin, condensin, and Smc5/6. As their names suggest, cohesin controls sister chromatid cohesion, condensin controls chromosome condensation, and while precise functions for Smc5/6 have remained somewhat elusive, most reports have focused on the control of recombinational DNA repair. Here, we focus on cohesin and Smc5/6 function. It is becoming increasingly clear that the functional repertoires of these complexes are greater than sister chromatid cohesion and recombination. These SMC complexes are emerging as interrelated and cooperating factors that control chromosome dynamics throughout interphase. However, they also release their embrace of sister chromatids to enable their segregation at anaphase, resetting the dynamic cycle of SMC-chromosome interactions.  相似文献   

3.
4.
Structure chromosome (SMC) proteins organize the core of cohesin, condensin and Smc5-Smc6 complexes. The Smc5-Smc6 complex is required for DNA repair, as well as having another essential but enigmatic function. Here, we generated conditional mutants of SMC5 and SMC6 in budding yeast, in which the essential function was affected. We show that mutant smc5-6 and smc6-9 cells undergo an aberrant mitosis in which chromosome segregation of repetitive regions is impaired; this leads to DNA damage and RAD9-dependent activation of the Rad53 protein kinase. Consistent with a requirement for the segregation of repetitive regions, Smc5 and Smc6 proteins are enriched at ribosomal DNA (rDNA) and at some telomeres. We show that, following Smc5-Smc6 inactivation, metaphase-arrested cells show increased levels of X-shaped DNA (Holliday junctions) at the rDNA locus. Furthermore, deletion of RAD52 partially suppresses the temperature sensitivity of smc5-6 and smc6-9 mutants. We also present evidence showing that the rDNA segregation defects of smc5/smc6 mutants are mechanistically different from those previously observed for condensin mutants. These results point towards a role for the Smc5-Smc6 complex in preventing the formation of sister chromatid junctions, thereby ensuring the correct partitioning of chromosomes during anaphase.  相似文献   

5.
The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.  相似文献   

6.
The cohesion of sister chromatids is mediated by cohesin, a protein complex containing members of the structural maintenance of chromosome (Smc) family. How cohesins tether sister chromatids is not yet understood. Here, we mutate SMC1, the gene encoding a cohesin subunit of budding yeast, by random insertion dominant negative mutagenesis to generate alleles that are highly informative for cohesin assembly and function. Cohesins mutated in the Hinge or Loop1 regions of Smc1 bind chromatin by a mechanism similar to wild-type cohesin, but fail to enrich at cohesin-associated regions (CARs) and pericentric regions. Hence, the Hinge and Loop1 regions of Smc1 are essential for the specific chromatin binding of cohesin. This specific binding and a subsequent Ctf7/Eco1-dependent step are both required for the establishment of cohesion. We propose that a cohesin or cohesin oligomer tethers the sister chromatids through two chromatin-binding events that are regulated spatially by CAR binding and temporally by Ctf7 activation, to ensure cohesins crosslink only sister chromatids.  相似文献   

7.
The cohesin complex, which is essential for sister chromatid cohesion and chromosome segregation, also inhibits resolution of sister chromatid intertwinings (SCIs) by the topoisomerase Top2. The cohesin-related Smc5/6 complex (Smc5/6) instead accumulates on chromosomes after Top2 inactivation, known to lead to a buildup of unresolved SCIs. This suggests that cohesin can influence the chromosomal association of Smc5/6 via its role in SCI protection. Using high-resolution ChIP-sequencing, we show that the localization of budding yeast Smc5/6 to duplicated chromosomes indeed depends on sister chromatid cohesion in wild-type and top2-4 cells. Smc5/6 is found to be enriched at cohesin binding sites in the centromere-proximal regions in both cell types, but also along chromosome arms when replication has occurred under Top2-inhibiting conditions. Reactivation of Top2 after replication causes Smc5/6 to dissociate from chromosome arms, supporting the assumption that Smc5/6 associates with a Top2 substrate. It is also demonstrated that the amount of Smc5/6 on chromosomes positively correlates with the level of missegregation in top2-4, and that Smc5/6 promotes segregation of short chromosomes in the mutant. Altogether, this shows that the chromosomal localization of Smc5/6 predicts the presence of the chromatid segregation-inhibiting entities which accumulate in top2-4 mutated cells. These are most likely SCIs, and our results thus indicate that, at least when Top2 is inhibited, Smc5/6 facilitates their resolution.  相似文献   

8.
The structural maintenance of chromosomes (SMC) proteins constitute the core of critical complexes involved in structural organization of chromosomes. In yeast, the Smc5/6 complex is known to mediate repair of DNA breaks and replication of repetitive genomic regions, including ribosomal DNA loci and telomeres. In mammalian cells, which have diverse genome structure and scale from yeast, the Smc5/6 complex has also been implicated in DNA damage response, but its further function in unchallenged conditions remains elusive. In this study, we addressed the behavior and function of Smc5/6 during the cell cycle. Chromatin fractionation, immunofluorescence, and live-cell imaging analyses indicated that Smc5/6 associates with chromatin during interphase but largely dissociates from chromosomes when they condense in mitosis. Depletion of Smc5 and Smc6 resulted in aberrant mitotic chromosome phenotypes that were accompanied by the abnormal distribution of topoisomerase IIα (topo IIα) and condensins and by chromosome segregation errors. Importantly, interphase chromatin structure indicated by the premature chromosome condensation assay suggested that Smc5/6 is required for the on-time progression of DNA replication and subsequent binding of topo IIα on replicated chromatids. These results indicate an essential role of the Smc5/6 complex in processing DNA replication, which becomes indispensable for proper sister chromatid assembly in mitosis.  相似文献   

9.
The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome segregation defects may be the source of lethality in irradiated Smc5-Smc6 hypomorphs. We show that in smc6 mutants, following DNA damage in interphase, chromosome arm segregation fails due to an aberrant persistence of cohesin, which is normally removed by the Separase-independent pathway. This postanaphase persistence of cohesin is not dependent on DNA damage, since the synthetic lethality of smc6 hypomorphs with a topoisomerase II mutant, defective in mitotic chromosome structure, is also due to the retention of cohesin on undamaged chromosome arms. In both cases, Separase overexpression bypasses the defect and restores cell viability, showing that defective cohesin removal is a major determinant of the mitotic lethality of Smc5-Smc6 mutants.Three essential SMC (structural maintenance of chromosomes) complexes control chromosome dynamics: condensin, cohesin, and the Smc5-Smc6 complex (37). They are composed of SMC heterodimers: Smc2 and -4 in condensin, Smc1 and -3 in cohesin, and Smc5 and -6 in Smc5-Smc6. These are large ATPases with globular N and C termini, which are separated by long coiled-coil domains. The termini interact through an ABC-like coordination of ATP through Walker A and B motifs, with the coiled-coils bending at a flexible “hinge” that acts as the SMC dimerization domain. Each complex contains a number of unique non-Smc subunits, which are likely to contribute to its unique function. Among these is a kleisin subunit, which interacts with both the SMC subunits, closing a potential ring-shaped structure (55, 61).Condensin is localized to chromosomes primarily during mitosis and is essential for mitotic chromosome condensation. Conversely, cohesin is localized primarily to interphase chromosomes and has been postulated to form a ring-shaped structure around sister chromatids to ensure their cohesion, which is important for DNA repair by homologous recombination (HR). As its name suggests, the function of the Smc5-Smc6 complex is relatively poorly understood.Scc2/4 loads cohesin onto chromosomes in G1, and sister chromatid cohesion is established during replication via the action of the acetyltransferase Eco1. Cohesin must be removed before chromosome segregation, where cleavage of the kleisin subunit Scc1 by the protease Separase is critical (51). In Saccharomyces cerevisiae, Separase-mediated Scc1 cleavage is essential for the removal of cohesin from all loci. In mammals, most cohesin is removed from chromosome arms early in mitosis in a Separase-independent process regulated by cohesin phosphorylation (28, 76). At anaphase, Separase-dependent removal of cohesin at the kinetochores ensures sister chromatid separation. In Schizosaccharomyces pombe, cohesin is thought to be regulated in a manner similar to that in mammals; only a small fraction of the Scc1 homolog Rad21 is cleaved by Separase (70), suggesting that most cohesin is removed by a Separase-independent mechanism.Cohesin-mediated sister chromatid cohesion is required for HR (64). Cohesin is recruited to double-stranded DNA breaks (DSBs) (66) and enforces cohesion genome wide after DNA damage in S. cerevisiae (65, 74). The acetyltransferase activity of Eco1 is essential for genomewide damage-induced cohesion, acting via the acetylation of Smc3 (6, 73, 81). In human cells, small interfering RNA (siRNA) studies have suggested a requirement for Smc5-Smc6 to recruit cohesin to DSBs (57), but this is not the case in S. cerevisiae (65), so the functional relationship between these related complexes also remains to be determined.In S. cerevisiae, Smc5-Smc6 is loaded onto chromatin by the cohesin loader Scc2/4 at loci that overlap with cohesin, including at DSBs (36). Smc5-Smc6-null mutants of S. pombe die in aberrant mitoses (27, 75), though the cause of this is unknown. Genetic analyses of Smc5-Smc6 in these yeasts have focused on its role in DNA repair by utilizing viable hypomorphic mutants that are highly sensitive to DNA damage. Studies with two hypomorphic smc6 mutants, bearing the smc6-X and smc6-74 mutations, have shown that Smc5-Smc6 is required for a late stage of HR subsequent to the recruitment of the Rad51/Rad52 recombination proteins and the formation of recombination intermediates (2). smc6-74 is a mutation (A151T) in the arginine finger motif of the N-terminal globular domain, while smc6-X is a mutation (R706C) in the hinge domain. Overexpression of Brc1, a multi-BRCT domain protein, suppresses the DNA damage sensitivities of several Smc5-Smc6 mutants but does not suppress smc6-X (45, 75). smc6-74 mutants, but not smc6-X mutants, are also defective in an early response to replication fork stalling, involving the recruitment of Rad52 but not Rad51 (30).As with cohesin, the HR defects in Smc5-Smc6 hypomorphic mutants are likely to result from a more general role in chromosome organization than acting as a recombinase. Smc5-Smc6 is required for HR following irradiation or recovery from hydroxyurea (HU)-induced replication arrest (2, 18, 27, 34, 35, 71, 75). However, in contrast to the sustained checkpoint arrest of irradiated HR mutants, S. pombe Smc5-Smc6 hypomorphs, such as that with the smc6-74 mutation, enter highly aberrant mitoses following DNA damage. For DSBs induced by ionizing radiation, smc6 mutants progress into mitosis with wild-type kinetics, but, as shown by pulsed-field gel electrophoresis (PFGE), the chromosomes are highly fragmented (75). In each case, the mitotic defects are blocked by an earlier (upstream) HR defect (2, 27, 43). The chromosome segregation and recombination defects are apparent on each of the three S. pombe chromosomes and are not limited to the ribosomal DNA present on both ends of chromosome III.These aberrant mitoses of Smc5-Smc6 mutants following DNA damage either block segregation completely (the “cut” phenotype, where the division septum bisects the nucleus) or result in partially segregated chromosomes that are incompletely resolved along the division plane, with an elongated mitotic spindle. Since Smc5-Smc6 is required to maintain a damage induced checkpoint arrest, the aberrant mitoses of Smc5-Smc6 mutants could result from attempting to segregate incompletely repaired chromosomes. Alternatively, defects may reflect a role for Smc5-Smc6 in promoting chromosome segregation that is revealed in hypomorphic mutants following exogenous DNA damage but is evident in null mutants without DNA damage or with low-level endogenous lesions. Notably, while viable, the hypomorphic mutants show a high level of spontaneous aneuploidy, which is also consistent with defects in chromosome segregation (35, 75).Another characteristic of smc6 mutants in S. pombe is a strong synthetic lethality with a temperature-sensitive (ts) allele of topoisomerase II (Top2), top2-191, at a permissive temperature for top2-191 of 30°C. This lethality is due to a failure of chromosome segregation that resembles mitoses in irradiated smc6-74 cells (75). top2-191 is a A802V mutation (63), and cells with this mutation show no defects in cell cycle progression at 30°C. At 36°C, top2-191 cells enter mitosis with normal kinetics but fail to segregate chromosomes. The defects of top2-191 cells at the restrictive temperature of 36°C manifest exclusively in mitosis without an interphase delay and include defective chromosome condensation. Therefore, the top2-191 allele may not affect the postreplicative decatenation activity of Top2 in S. pombe. Rather, the smc6-top2-191 interaction may be related to the structural role played by Top2 in mitotic chromosome architecture (12, 14, 79).In vertebrate cells, defective decatenation caused by Top2 inhibition with drugs such as etoposide or doxorubicin block the rejoining of molecules cleaved by Top2. This leaves DSBs that elicit a G2 DNA damage checkpoint response in many cell types (13, 16, 17, 38). Conversely, human cells in which Top2 has been deleted enter mitosis but show disordered chromosomes that fail to segregate (12). Thus, in S. pombe, top2-191 has a terminal phenotype more closely related to that of human cells with Top2 deleted than to that of cells with chemically inhibited Top2 that are blocked midway in the decatenation reaction.Here we have investigated the mitotic role of Smc5-Smc6 in S. pombe. We find that Smc5-Smc6 is required for the removal of cohesin from damaged chromosome arms prior to anaphase and from undamaged chromosomes when the mitotic function of Top2 is compromised. We show that a defect in cohesin removal is a major determinant of lethality in smc6 mutants and highlight the importance of coordinating Smc5-Smc6 and cohesin function in the maintenance of genome integrity.  相似文献   

10.
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.  相似文献   

11.
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.  相似文献   

12.
Mitotic chromosome segregation requires the removal of physical connections between sister chromatids. In addition to cohesin and topological entrapments, sister chromatid separation can be prevented by the presence of chromosome junctions or ongoing DNA replication. We will collectively refer to them as DNA-mediated linkages. Although this type of structures has been documented in different DNA replication and repair mutants, there is no known essential mechanism ensuring their timely removal before mitosis. Here, we show that the dissolution of these connections is an active process that requires the Smc5/6 complex, together with Mms21, its associated SUMO-ligase. Failure to remove DNA-mediated linkages causes gross chromosome missegregation in anaphase. Moreover, we show that Smc5/6 is capable to dissolve them in metaphase-arrested cells, thus restoring chromosome resolution and segregation. We propose that Smc5/6 has an essential role in the removal of DNA-mediated linkages to prevent chromosome missegregation and aneuploidy.  相似文献   

13.
Lehmann AR 《DNA Repair》2005,4(3):309-314
The SMC proteins form the cores of three protein complexes in eukaryotes, cohesin, condensin and the Smc5-6 complex. Cohesin holds sister chromatids together after DNA replication and is involved in both the repair of double-strand breaks by homologous recombination and the intra-S-phase checkpoint. Condensin assists in the condensation of chromosomes at mitosis and also has a role in checkpoint control pathways. The Smc5-6 complex is involved in a variety of DNA repair and damage response pathways by as yet unknown mechanisms, but is also associated with repair by homologous recombination.  相似文献   

14.
Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways.  相似文献   

15.
The efficient repair of double-strand breaks (DSBs) is crucial in maintaining genomic integrity. Sister chromatid cohesion is important for not only faithful chromosome segregation but also for proper DSB repair. During DSB repair, the Smc1–Smc3 cohesin complex is loaded onto chromatin around the DSB to support recombination-mediated DSB repair. In this study, we investigated whether Ctf18, a factor implicated in the establishment of sister chromatid cohesion, is involved in DSB repair in budding yeast. Ctf18 was recruited to HO-endonuclease induced DSB sites in an Mre11-dependent manner and to damaged chromatin in G2/M phase-arrested cells. The ctf18 mutant cells showed high sensitivity to DSB-inducible genotoxic agents and defects in DSB repair, as well as defects in damage-induced recombination between sister chromatids and between homologous chromosomes. These results suggest that Ctf18 is involved in damage-induced homologous recombination.  相似文献   

16.
Meiosis, a specialized cell division with a single cycle of DNA replication round and two consecutive rounds of nuclear segregation, allows for the exchange of genetic material between parental chromosomes and the formation of haploid gametes. The structural maintenance of chromosome (SMC) proteins aid manipulation of chromosome structures inside cells. Eukaryotic SMC complexes include cohesin, condensin and the Smc5-Smc6 complex. Meiotic roles have been discovered for cohesin and condensin. However, although Smc5-Smc6 is known to be required for successful meiotic divisions, the meiotic functions of the complex are not well understood. Here we show that the Smc5-Smc6 complex localizes to specific chromosome regions during meiotic prophase I. We report that meiotic cells lacking Smc5-Smc6 undergo catastrophic meiotic divisions as a consequence of unresolved linkages between chromosomes. Surprisingly, meiotic segregation defects are not rescued by abrogation of Spo11-induced meiotic recombination, indicating that at least some chromosome linkages in smc5-smc6 mutants originate from other cellular processes. These results demonstrate that, as in mitosis, Smc5-Smc6 is required to ensure proper chromosome segregation during meiosis by preventing aberrant recombination intermediates between homologous chromosomes.  相似文献   

17.
Faithful transmission of chromosomes during eukaryotic cell division requires sister chromatids to be paired from their generation in S phase until their separation in M phase. Cohesion is mediated by the cohesin complex, whose Smc1, Smc3 and Scc1 subunits form a tripartite ring that entraps both DNA double strands. Whereas centromeric cohesin is removed in late metaphase by Scc1 cleavage, metazoan cohesin at chromosome arms is displaced already in prophase by proteolysis‐independent signalling. Which of the three gates is triggered by the prophase pathway to open has remained enigmatic. Here, we show that displacement of human cohesin from early mitotic chromosomes requires dissociation of Smc3 from Scc1 but no opening of the other two gates. In contrast, loading of human cohesin onto chromatin in telophase occurs through the Smc1–Smc3 hinge. We propose that the use of differently regulated gates for loading and release facilitates unidirectionality of DNA's entry into and exit from the cohesin ring.  相似文献   

18.
The evolutionarily conserved cohesin complex is required for the establishment and maintenance of sister chromatid cohesion, in turn essential for proper chromosome segregation. RAD21/SCC1 is a regulatory subunit of the mitotic cohesin complex, as it links together all other subunits of the complex. The destruction of RAD21/SCC1 along chromosomal arms and later at centromeres results in the dissociation of the cohesin complex, facilitating chromosome segregation. Here, we report for the first time that mammalian RAD21/SCC1 associates with the axial/lateral elements of the synaptonemal complex along chromosome arms and on centromeres of mouse spermatocytes. Importantly, RAD21/SCC1 is lost from chromosome arms in late prophase I but persists on centromeres. The loss of centromeric RAD21/SCC1 coincides with the separation of sister chromatids at anaphase II. These findings support a role for mammalian RAD21/SCC1 in maintaining sister chromatid cohesion in meiosis.  相似文献   

19.
Huang J  Hsu JM  Laurent BC 《Molecular cell》2004,13(5):739-750
The fidelity of chromosome segregation requires that the cohesin protein complex bind together newly replicated sister chromatids both at centromeres and at discrete sites along chromosome arms. Segregation of the yeast 2 micro plasmid also requires cohesin, which is recruited to the plasmid partitioning locus. Here we report that the RSC chromatin-remodeling complex regulates the differential association of cohesin with centromeres and chromosome arms. RSC cycles on and off chromosomal arm and plasmid cohesin binding sites in a cell cycle-regulated manner 15 min preceding Mcd1p, the central cohesin subunit. We show that in rsc mutants Mcd1p fails to associate with chromosome arms but still binds to centromeres, and that consequently, the arm regions of mitotic sister chromosomes separate precociously while cohesion at centromeres is unaffected. Our data suggest a role for RSC in facilitating the loading of cohesin specifically onto chromosome arms, thereby ensuring sister chromatid cohesion and proper chromosome segregation.  相似文献   

20.
During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号